Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement

被引:0
|
作者
Christoph Berkholz
Paul Bonsma
Martin Grohe
机构
[1] Humboldt-Universität zu Berlin,Institut für Informatik
[2] University of Twente,Faculty of EEMCS
[3] RWTH Aachen,undefined
来源
关键词
Graph isomorphism; Colour refinement; Partition refinement; Canonical labelling;
D O I
暂无
中图分类号
学科分类号
摘要
An assignment of colours to the vertices of a graph is stable if any two vertices of the same colour have identically coloured neighbourhoods. The goal of colour refinement is to find a stable colouring that uses a minimum number of colours. This is a widely used subroutine for graph isomorphism testing algorithms, since any automorphism needs to be colour preserving. We give an O((m + n)log n) algorithm for finding a canonical version of such a stable colouring, on graphs with n vertices and m edges. We show that no faster algorithm is possible, under some modest assumptions about the type of algorithm, which captures all known colour refinement algorithms.
引用
收藏
页码:581 / 614
页数:33
相关论文
共 50 条
  • [1] Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement
    Berkholz, Christoph
    Bonsma, Paul
    Grohe, Martin
    ALGORITHMS - ESA 2013, 2013, 8125 : 145 - 156
  • [2] Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement
    Berkholz, Christoph
    Bonsma, Paul
    Grohe, Martin
    THEORY OF COMPUTING SYSTEMS, 2017, 60 (04) : 581 - 614
  • [3] Tight Lower Bounds for the Complexity of Multicoloring
    Bonamy, Marthe
    Kowalik, Lukasz
    Pilipczuk, Michal
    Socala, Arkadiusz
    Wrochna, Marcin
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2019, 11 (03)
  • [5] Tight upper and lower bounds on suffix tree breadth
    Badkobeh, Golnaz
    Gawrychowski, Pawel
    Kaerkkaeinen, Juha
    Puglisi, Simon J.
    Zhukova, Bella
    THEORETICAL COMPUTER SCIENCE, 2021, 854 (854) : 63 - 67
  • [6] Simple and tight complexity lower bounds for solving Rabin games
    Casares, Antonio
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Souza, Ueverton S.
    Thejaswini, K. S.
    2024 SYMPOSIUM ON SIMPLICITY IN ALGORITHMS, SOSA, 2024, : 160 - 167
  • [7] Tight Lower Bounds for the RMR Complexity of Recoverable Mutual Exclusion
    Chan, David Yu Cheng
    Woelfel, Philipp
    PROCEEDINGS OF THE 2021 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '21), 2021, : 533 - 543
  • [8] Tight Lower Bounds on the Resolution Complexity of Perfect Matching Principles
    Itsykson, Dmitry
    Oparin, Vsevolod
    Slabodkin, Mikhail
    Sokolov, Dmitry
    FUNDAMENTA INFORMATICAE, 2016, 145 (03) : 229 - 242
  • [9] Lower and Upper Bounds on the Randomness Complexity of Private Computations of AND
    Kushilevitz, Eyal
    Ostrovsky, Rafail
    Prouff, Emmanuel
    Rosen, Adi
    Thillard, Adrian
    Vergnaud, Damien
    THEORY OF CRYPTOGRAPHY, TCC 2019, PT II, 2019, 11892 : 386 - 406
  • [10] Upper and Lower Bounds on the Smoothed Complexity of the Simplex Method
    Huiberts, Sophie
    Lee, Yin Tat
    Zhang, Xinzhi
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1904 - 1917