On Self-Adjoint Extensions and Symmetries in Quantum Mechanics

被引:0
|
作者
Alberto Ibort
Fernando Lledó
Juan Manuel Pérez-Pardo
机构
[1] Universidad Carlos III de Madrid,Department of Mathematics
[2] Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM),undefined
[3] INFN-Sezione di Napoli,undefined
来源
Annales Henri Poincaré | 2015年 / 16卷
关键词
Hilbert Space; Quadratic Form; Unitary Representation; Symmetric Operator; Representation Versus;
D O I
暂无
中图分类号
学科分类号
摘要
Given a unitary representation of a Lie group G on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}$$\end{document}, we develop the theory of G-invariant self-adjoint extensions of symmetric operators using both von Neumann’s theorem and the theory of quadratic forms. We also analyze the relation between the reduction theory of the unitary representation and the reduction of the G-invariant unbounded operator. We also prove a G-invariant version of the representation theorem for closed and semi-bounded quadratic forms. The previous results are applied to the study of G-invariant self-adjoint extensions of the Laplace–Beltrami operator on a smooth Riemannian manifold with boundary on which the group G acts. These extensions are labeled by admissible unitaries U acting on the L2-space at the boundary and having spectral gap at −1. It is shown that if the unitary representation V of the symmetry group G is traceable, then the self-adjoint extension of the Laplace–Beltrami operator determined by U is G-invariant if U and V commute at the boundary. Various significant examples are discussed at the end.
引用
收藏
页码:2367 / 2397
页数:30
相关论文
共 50 条
  • [1] On Self-Adjoint Extensions and Symmetries in Quantum Mechanics
    Ibort, Alberto
    Lledo, Fernando
    Manuel Perez-Pardo, Juan
    [J]. ANNALES HENRI POINCARE, 2015, 16 (10): : 2367 - 2397
  • [2] Self-adjoint extensions of operators in Quantum Mechanics
    Filgueiras, C.
    Moraes, Fernando
    [J]. REVISTA BRASILEIRA DE ENSINO DE FISICA, 2007, 29 (01): : 11 - 13
  • [3] Self-adjoint extensions of operators and the teaching of quantum mechanics
    Bonneau, G
    Faraut, J
    Valent, G
    [J]. AMERICAN JOURNAL OF PHYSICS, 2001, 69 (03) : 322 - 331
  • [4] Self-adjoint extensions and SUSY breaking in supersymmetric quantum mechanics
    Falomir, H
    Pisani, PAG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (21): : 4665 - 4683
  • [5] Self-adjoint and Markovian extensions of infinite quantum graphs
    Kostenko, Aleksey
    Mugnolo, Delio
    Nicolussi, Noema
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (02): : 1262 - 1313
  • [6] SELF-ADJOINT EXTENSIONS OF RESTRICTIONS
    Posilicano, Andrea
    [J]. OPERATORS AND MATRICES, 2008, 2 (04): : 483 - 506
  • [7] On the inequivalence of renormalization and self-adjoint extensions for quantum singular interactions
    Camblong, Horacio E.
    Epele, Luis N.
    Fanchiotti, Huner
    Garcia Canal, Carlos A.
    Ordonez, Carlos R.
    [J]. PHYSICS LETTERS A, 2007, 364 (06) : 458 - 464
  • [8] PERTURBATIONS OF SELF-ADJOINT OPERATORS WITH POINT SPECTRA BY RESTRICTIONS AND SELF-ADJOINT EXTENSIONS
    SCHMUDGEN, K
    [J]. MATHEMATISCHE ANNALEN, 1981, 256 (02) : 233 - 248
  • [9] CONSTRUCTING QUANTUM OBSERVABLES AND SELF-ADJOINT EXTENSIONS OF SYMMETRIC OPERATORS. III. SELF-ADJOINT BOUNDARY CONDITIONS
    Voronov, B. L.
    Gitman, D. M.
    Tyutin, I. V.
    [J]. RUSSIAN PHYSICS JOURNAL, 2008, 51 (02) : 115 - 157
  • [10] SELF-ADJOINT EXTENSIONS AND SIGNATURE CHANGE
    EGUSQUIZA, IL
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (09) : L89 - L92