New tuning design schemes of fractional complex-order PI controller

被引:0
|
作者
Masoomeh Shahiri
Abolfazl Ranjbar
Mohammad Reza Karami
Reza Ghaderi
机构
[1] Babol Noshirvani University of Technology,Department of Computer and Electrical Engineering
[2] Shahid Beheshti University,Department of Electrical and Computer Engineering
来源
Nonlinear Dynamics | 2016年 / 84卷
关键词
Complex-order; Fractional controller; MIGO; Sensitivity functions; Constraint; Integral performance index; FCO-PI tuning; PEMFC; Load disturbance;
D O I
暂无
中图分类号
学科分类号
摘要
This manuscript presents two systematic design procedures, to tune parameters of a fractional complex-order PI (FCO-PI) controller in the form of PIa+ib\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PI}^{a+ib}$$\end{document}. The PIa+ib\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PI}^{a+ib}$$\end{document} controller uses extra parameter(s) than the conventional fractional- and/or integer-order PI controllers. Therefore, more specifications can be achieved. These are investigated in two different approaches through comparative studies. The proposed design procedures are based on realizing some frequency domain restrictions. These are eventually stated in terms of Ms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{s}$$\end{document} and Mp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{p}$$\end{document} constraints, developing integral gain optimization tuning method. In this method, optimized amount of parameters are assessed based on minimizing the integral error indices with a constraint on the maximum sensitivity functions. In this aim, tuning of parameters of fractional complex-order controller via M constraint integral gain optimization (FC-MIGO) algorithm is innovatively defined and then the so-called FC-MIGO rule is proposed by applying FC-MIGO algorithm on a test batch. Comprehensive simulations illustrate how systematic and significant the proposed algorithms are. Capability of the design procedure will be also investigated on a PEM fuel cell as a case study.
引用
下载
收藏
页码:1813 / 1835
页数:22
相关论文
共 50 条
  • [1] New tuning design schemes of fractional complex-order PI controller
    Shahiri, Masoomeh
    Ranjbar, Abolfazl
    Karami, Mohammad Reza
    Ghaderi, Reza
    NONLINEAR DYNAMICS, 2016, 84 (03) : 1813 - 1835
  • [2] Tuning of fractional complex-order direct current motor controller using frequency domain analysis
    Zheng, Min
    Zhang, Guangfeng
    Huang, Tao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 3167 - 3181
  • [3] Complex-order controller design examples and their implementation
    Nako, Julia
    Psychalinos, Costas
    Elwakil, Ahmed S.
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2024, 52 (01) : 473 - 482
  • [4] Robust fractional order PIλDμ controller design and parameter tuning
    Zhou, Xi
    Wei, Yiheng
    Wang, Yong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 6466 - 6471
  • [5] Complex-order fractional Fourier transforms in optical schemes with Gaussian apertures
    Malyutin, AA
    QUANTUM ELECTRONICS, 2004, 34 (10) : 960 - 964
  • [6] Fractional complex-order Fourier transforms in optical schemes with Gaussian apertures
    Malyutin, A.A.
    Kvantovaya Elektronika, 2004, 34 (10): : 960 - 964
  • [7] A New Design Mmethod of Fractional Order PIλDμ Controller
    Gong Ruikun
    Zhang Guangxiang
    Luo Jun
    Yang Youliang
    Tian Yansong
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 194 - 198
  • [8] Tuning of Fractional Complex Order PID Controller
    Guefrachi, Ayadi
    Najar, Slaheddine
    Amairi, Messaoud
    Aoun, Mohamed
    IFAC PAPERSONLINE, 2017, 50 (01): : 14563 - 14568
  • [9] IMC Based Tuning of Fractional Order Controller (PIλDμ Controller)
    Godweena, Kirthini A.
    Sundaravadivu, K.
    2015 INTERNATIONAL CONFERENCED ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2015), 2015,
  • [10] Online Fractional-Order PIα Controller Tuning Scheme
    Keziz, Bouziane
    Djouambi, Abdelbaki
    Ladaci, Samir
    2018 6TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2018,