Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications

被引:0
|
作者
Vincenzo Aquilanti
Ana Carla P. Bitencourt
Cristiane da S. Ferreira
Annalisa Marzuoli
Mirco Ragni
机构
[1] Università di Perugia,Dipartimento di Chimica
[2] Sezione di Pavia,Nazionale di Fisica Nucleare
来源
关键词
Angular Momentum; Semiclassical Limit; Spin Network; Magnetic Quantum Number; Topological Quantum Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
The quantum theory of angular momentum and the associated Racah–Wigner algebra of the Lie group SU(2) have been widely used in many branches of theoretical and applied physics, chemical physics, and mathematical physics. This paper starts with an account of the basics of such a theory, which represents the most exhaustive framework in dealing with interacting many-angular momenta quantum systems. We then outline the essential features of this algebra, that can be encoded, for each fixed number N = (n + 1) of angular momentum variables, into a combinatorial object, the spin network graph, where vertices are associated with finite-dimensional, binary coupled Hilbert spaces while edges correspond to either phase or Racah transforms (implemented by 6j symbols) acting on states in such a way that the quantum transition amplitude between any pair of vertices is provided by a suitable 3nj symbol. Applications of such a combinatorial setting—both in fully quantum and in semiclassical regimes—are briefly discussed providing evidence of a unifying background structure.
引用
收藏
页码:237 / 247
页数:10
相关论文
共 50 条
  • [1] Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications
    Aquilanti, Vincenzo
    Bitencourt, Ana Carla P.
    Ferreira, Cristiane da S.
    Marzuoli, Annalisa
    Ragni, Mirco
    THEORETICAL CHEMISTRY ACCOUNTS, 2009, 123 (3-4) : 237 - 247
  • [2] Angular momentum theory, umbral calculus, and combinatorics
    Chen, WYC
    Galbraith, HW
    Louck, JD
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (09) : 1199 - 1214
  • [3] AUTOMATED ANGULAR-MOMENTUM RECOUPLING ALGEBRA
    WILLIAMS, HT
    SILBAR, RR
    JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 99 (02) : 299 - 309
  • [4] RECOUPLING THE ANGULAR-MOMENTUM DECOUPLING APPROXIMATIONS
    MCLENITHAN, K
    SECREST, D
    JOURNAL OF CHEMICAL PHYSICS, 1980, 73 (05): : 2513 - 2515
  • [5] Exact computation and large angular momentum asymptotics of 3nj symbols: Semiclassical disentangling of spin networks
    Anderson, Roger W.
    Aquilanti, Vincenzo
    Ferreira, Cristiane Da Silva
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (16):
  • [6] The analytical Scheme calculator for angular momentum coupling and recoupling coefficients
    Deveikis, A
    Kuznecovas, A
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 172 (01) : 60 - 67
  • [7] The primitive L-pattern of angular momentum recoupling coefficients
    Lai, ST
    Chiu, YN
    Letelier, R
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (01) : 1 - 16
  • [8] Analytical Scheme Calculations of Angular Momentum Coupling and Recoupling Coefficients
    Deveikis, A.
    Kuznecovas, A.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2007, 4 (02) : 154 - 157
  • [9] The primitive L-pattern of angular momentum recoupling coefficients
    Shan-Tao Lai
    Ying-Nan Chiu
    Ricardo Letelier
    Journal of Mathematical Chemistry, 2005, 37 : 1 - 16
  • [10] Measurement and Applications of Transverse Spin Angular Momentum in Structured Light
    Neugebauer, Martin
    Bauer, Thomas
    Aiello, Andrea
    Leuchs, Gerd
    Banzer, Peter
    2016 PHOTONICS NORTH (PN), 2016,