Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease

被引:0
|
作者
Hongfei Jia
Huan Lao
机构
[1] Beijing Technology and Business University,Beijing Key Laboratory of Big Data Technology for Food Safety, School of Artificial Intelligence
[2] Guangxi Minzu University,School of Artificial Intelligence
来源
关键词
Alzheimer's disease; Functional magnetic resonance imaging; Structure magnetic resonance imaging; 3DMR-PCANet; 3DResNet-10; Kernel canonical correlation analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The accurate diagnosis of Alzheimer’s disease (AD) in the early stages, such as significant memory concern (SMC) and mild cognitive impairment (MCI), is essential in order to slow its progression through timely treatment. Recent achievements have shown that fusing multimodal neuroimaging data effectively facilitates AD diagnosis. However, most proposed fusion methods simply add or concatenate multimodal features and do not make full use of nonlinear features and texture features across the range of modalities. This paper proposes a diagnostic model that effectively diagnoses AD in different stages by fusing functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) information. First, fMRI and sMRI scans are preprocessed, and mean regional homogeneity (mReHo) transformation is performed for the preprocessed fMRI scans. Then, 3DMR-PCANet extracts features of mReHo images. The basic ResNet module is stacked to build a 3DResNet-10 model for feature extraction of sMRI scans. Next, two image features are fused by kernel canonical correlation analysis. Finally, a support vector machine (SVM) is utilized for the classification of fused features. Experimental results on the Alzheimer's Disease Neuroimaging dataset demonstrate the effectiveness of the proposed method. Specifically, this method improves on the accuracy, specificity, sensitivity, F1 value and area under the curve (AUC) of existing methods in comparisons of the normal control (NC) versus SMC, NC versus MCI, NC versus AD, SMC versus MCI, SMC versus AD, and MCI versus AD groups, which confirms that the proposed method can mine information on the correlation between fMRI and sMRI data of the same subject and can effectively classify AD patients in different stages.
引用
收藏
页码:19585 / 19598
页数:13
相关论文
共 50 条
  • [1] Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease
    Jia, Hongfei
    Lao, Huan
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22): : 19585 - 19598
  • [2] Assisted Diagnosis of Alzheimer's Disease Based on Deep Learning and Multimodal Feature Fusion
    Wang, Yu
    Liu, Xi
    Yu, Chongchong
    [J]. COMPLEXITY, 2021, 2021
  • [3] Alzheimer's disease diagnosis via multimodal feature fusion
    Tu, Yue
    Lin, Shukuan
    Qiao, Jianzhong
    Zhuang, Yilin
    Zhang, Peng
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [4] Multimodal Neuroimaging Feature Learning With Multimodal Stacked Deep Polynomial Networks for Diagnosis of Alzheimer's Disease
    Shi, Jun
    Zheng, Xiao
    Li, Yan
    Zhang, Qi
    Ying, Shihui
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (01) : 173 - 183
  • [5] Multimodal Fusion-Based Deep Learning Network for Effective Diagnosis of Alzheimer's Disease
    Dwivedi, Shubham
    Goel, Tripti
    Tanveer, M.
    Murugan, R.
    Sharma, Rahul
    [J]. IEEE MULTIMEDIA, 2022, 29 (02) : 45 - 55
  • [6] Multimodal Neuroimaging Feature Learning for Multiclass Diagnosis of Alzheimer's Disease
    Liu, Siqi
    Liu, Sidong
    Cai, Weidong
    Che, Hangyu
    Pujol, Sonia
    Kikinis, Ron
    Feng, Dagan
    Fulham, Michael J.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (04) : 1132 - 1140
  • [7] A Multimodal Deep Learning Based Approach for Alzheimer's Disease Diagnosis
    De Simone, Adriano
    Sansone, Carlo
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT II, 2024, 14366 : 131 - 139
  • [8] Computer aided Alzheimer's disease diagnosis by an unsupervised deep learning technology
    Bi, Xiuli
    Li, Shutong
    Xiao, Bin
    Li, Yu
    Wang, Guoyin
    Ma, Xu
    [J]. NEUROCOMPUTING, 2020, 392 : 296 - 304
  • [9] Multimodal attention-based deep learning for Alzheimer's disease diagnosis
    Golovanevsky, Michal
    Eickhoff, Carsten
    Singh, Ritambhara
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (12) : 2014 - 2022
  • [10] Alzheimer's disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion
    Zhang, Yuanpeng
    Wang, Shuihua
    Xia, Kaijian
    Jiang, Yizhang
    Qian, Pengjiang
    [J]. INFORMATION FUSION, 2021, 66 : 170 - 183