Deformations and embeddings of three-dimensional strictly pseudoconvex CR manifolds

被引:0
|
作者
Sean N. Curry
Peter Ebenfelt
机构
[1] Oklahoma State University,Department of Mathematics
[2] University of California at San Diego,Department of Mathematics
来源
Mathematische Annalen | 2024年 / 389卷
关键词
32V20; 32V30;
D O I
暂无
中图分类号
学科分类号
摘要
Abstract deformations of the CR structure of a compact strictly pseudoconvex hypersurface M in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^2$$\end{document} are encoded by complex functions on M. In sharp contrast with the higher dimensional case, the natural integrability condition for 3-dimensional CR structures is vacuous, and generic deformations of a compact strictly pseudoconvex hypersurface M⊆C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\subseteq {\mathbb {C}}^2$$\end{document} are not embeddable even in CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^N$$\end{document} for any N. A fundamental (and difficult) problem is to characterize when a complex function on M⊆C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M \subseteq {\mathbb {C}}^2$$\end{document} gives rise to an actual deformation of M inside C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^2$$\end{document}. In this paper we study the embeddability of families of deformations of a given embedded CR 3-manifold, and the structure of the space of embeddable CR structures on S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^3$$\end{document}. We show that the space of embeddable deformations of the standard CR 3-sphere is a Frechet submanifold of C∞(S3,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{\infty }(S^3,{\mathbb {C}})$$\end{document} near the origin. We establish a modified version of the Cheng–Lee slice theorem in which we are able to characterize precisely the embeddable deformations in the slice (in terms of spherical harmonics). We also introduce a canonical family of embeddable deformations and corresponding embeddings starting with any infinitesimally embeddable deformation of the unit sphere in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^2$$\end{document}.
引用
收藏
页码:627 / 669
页数:42
相关论文
共 50 条