共 50 条
A flocculation tensor to monitor water quality using a deep learning model
被引:0
|作者:
Guocheng Zhu
Jialin Lin
Haiquan Fang
Fang Yuan
Xiaoshang Li
Cheng Yuan
Andrew S. Hursthouse
机构:
[1] Hunan University of Science and Technology,College of Civil Engineering
[2] General Water of China Co.,School of Computing, Engineering and Physical Sciences
[3] Ltd.,undefined
[4] Xiangtan Middle Ring Water Business Limited Corporation,undefined
[5] University of the West of Scotland,undefined
来源:
关键词:
Flocculation;
Tensor;
Tensor diagram;
Deep learning;
Model;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The increasing quantities of polluted waters are calling for advanced purification methods. Flocculation is an essential component of the water purification process, yet flocculation is commonly not optimal due to our poor understanding of the flocculation process. In particular, there is little knowledge on the mechanisms ruling the migration of pollutants during treatment. Here we have created the first tensor diagram, a mathematical framework for the flocculation process, analyzed its properties with a deep learning model, and developed a classification scheme for its relationship with pollutants. The tensor was constructed by combining pixel matrices from a variety of floc images, each with a particular flocculation period. Changing the factors used to make flocs images, such as coagulant dose and pH, resulted in tensors, which were used to generate matrices, that is the tensor diagram. Our deep learning algorithm employed a tensor diagram to identify pollution levels. Results show tensor map attributes with over 98% of sample images correctly classified. This approach offers potential to reduce the time delay of feedback from the flocculation process with deep learning categorization based on its clustering capabilities. The advantage of the tensor data from the flocculation process improves the efficiency and speed of response for commercial water treatment.
引用
收藏
页码:3405 / 3414
页数:9
相关论文