Notes on Free Monadic Boolean Algebras

被引:0
|
作者
Luiz F. Monteiro
Manuel Abad
Sonia Savini
Julio Sewald
机构
[1] Universidad Nacional del Sur,INMABB
来源
Order | 1999年 / 16卷
关键词
free algebras; monadic algebras;
D O I
暂无
中图分类号
学科分类号
摘要
If F B(2n − 1) denotes the Boolean algebra with 2n − 1 free generators and P(2n) is the Cartesian product of 2n Boolean algebras all equal to F B(2n − 1), we define on P(2n) an existential quantifier ∃ by means of a relatively complete Boolean subalgebra of P(2n) and we prove that (P(2n),∃) is the monadic Boolean algebra with n free generators. Every element of P(2n) is a 2n-tuple whose coordinates are in F B(2n − 1); in particular, so are the n generators of P(2n). We indicate in this work the coordinates of the n generators of P(2n).
引用
收藏
页码:277 / 289
页数:12
相关论文
共 50 条
  • [1] Notes on free monadic Boolean algebras
    Monteiro, LF
    Abad, M
    Savini, S
    Sewald, J
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1999, 16 (03): : 277 - 289
  • [2] Endomorphisms of monadic Boolean algebras
    M. E. Adams
    W. Dziobiak
    Algebra universalis, 2007, 57 : 131 - 142
  • [3] THE REPRESENTATION OF MONADIC BOOLEAN ALGEBRAS
    HALMOS, PR
    DUKE MATHEMATICAL JOURNAL, 1959, 26 (03) : 447 - 454
  • [4] Endomorphisms of monadic Boolean algebras
    Adams, M. E.
    Dziobiak, W.
    ALGEBRA UNIVERSALIS, 2007, 57 (02) : 131 - 142
  • [5] Free monadic Tarski algebras
    L.F. Monteiro
    M. Abad
    S. Savini
    J. Sewald
    algebra universalis, 1997, 37 : 106 - 118
  • [6] Free monadic Tarski algebras
    Monteiro, LF
    Abad, M
    Savini, S
    Sewald, J
    ALGEBRA UNIVERSALIS, 1997, 37 (01) : 106 - 118
  • [7] Free monadic Tarski algebras
    Figallo, AV
    ALGEBRA UNIVERSALIS, 1996, 35 (01) : 141 - 150
  • [8] Monadic Boolean algebras with an automorphism and their relation to Df2-algebras
    Figallo, Aldo V.
    Gomes, Claudia M.
    SOFT COMPUTING, 2020, 24 (01) : 227 - 236
  • [9] NUMBER OF EPIMORPHISMS BETWEEN FINITE MONADIC BOOLEAN-ALGEBRAS
    ABAD, M
    MONTEIRO, L
    JOURNAL OF SYMBOLIC LOGIC, 1981, 46 (01) : 181 - 181
  • [10] RELATION BETWEEN BOOLEAN RINGS, MONADIC RINGS AND LUKASIEWICZ TRIVALENT ALGEBRAS
    MAYET, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 275 (01): : 1 - &