Local duality for modules over Noetherian commutative rings

被引:0
|
作者
Zwyagina M.B. [1 ]
机构
[1] St.Petersburg State University,
关键词
Special Kind; Maximal Ideal; Commutative Ring; General Theorem; Structural Result;
D O I
10.1023/A:1020342902872
中图分类号
学科分类号
摘要
Some applications of the general theorem on the existence of local duality for modules over Noetherian commutative rings are given. Let A be a Noetherian commutative ring, let M = (971) be a set of maximal ideals in A, and let A = lim Am Γ(A) = π. Then the category of Artinian modules is dual to the category of Noetherian modules. Several structural results are proved, including the theorem on the structure of Artinian modules over principal ideal domains. For rings of special kinds, double centralizer theorems are proved. ©2002 Plenum Publishing Corporation.
引用
收藏
页码:4337 / 4347
页数:10
相关论文
共 50 条