The structure of the Kauffman bracket skein algebra at roots of unity

被引:0
|
作者
Charles Frohman
Joanna Kania-Bartoszynska
机构
[1] The University of Iowa,Department of Mathematics
[2] The National Science Foundation,Division of Mathematical Sciences
来源
Mathematische Zeitschrift | 2018年 / 289卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper examines the structure of the Kauffman bracket skein algebra of a punctured surface at roots of unity. A criterion that determines when a collection of skeins forms a basis of the skein algebra as a module over the SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,{{\mathbb {C}}})$$\end{document} characters of the fundamental group of the surface, with appropriate localization is given. This is used to prove that when the algebra is localized so that every nonzero element of the center has a multiplicative inverse, it is a division algebra. Finally, it is proved that the localized skein algebra can be split as a module over its center as a tensor product of two commutative subalgebras.
引用
收藏
页码:889 / 920
页数:31
相关论文
共 50 条