The influence of data regularity in the critical exponent for a class of semilinear evolution equations

被引:0
|
作者
Marcelo R. Ebert
Cleverson R. da Luz
Maíra F. G. Palma
机构
[1] University of São Paulo,Department of Computing and Mathematics
[2] Federal University of Santa Catarina,Department of Mathematics
关键词
Semilinear evolution operators; Structural dissipation; Global small data solutions; Critical exponent; Asymptotic behavior of solutions; Primary 35B33; 35B40; Secondary 35L71; 35L90;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we find the critical exponent for the global existence (in time) of small data solutions to the Cauchy problem for the semilinear dissipative evolution equations utt+(-Δ)δutt+(-Δ)αu+(-Δ)θut=|ut|p,t≥0,x∈Rn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{tt}+(-\Delta )^\delta u_{tt}+(-\Delta )^\alpha u+(-\Delta )^\theta u_t=|u_t|^p, \quad t\ge 0,\,\, x\in {\mathbb {R}}^n, \end{aligned}$$\end{document}with p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, 2θ∈[0,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\theta \in [0, \alpha ]$$\end{document} and δ∈(θ,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (\theta ,\alpha ]$$\end{document}. We show that, under additional regularity Hα+δ(Rn)∩Lm(Rn)×H2δ(Rn)∩Lm(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( H^{\alpha +\delta }({\mathbb {R}}^n)\cap L^{m}({\mathbb {R}}^n) \right) \times \left( H^{2\delta }({\mathbb {R}}^n)\cap L^{m}({\mathbb {R}}^n)\right) $$\end{document} for initial data, with m∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in (1,2]$$\end{document}, the critical exponent is given by pc=1+2mθn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_c=1+\frac{2m\theta }{n}$$\end{document}. The nonexistence of global solutions in the subcritical cases is proved, in the case of integers parameters α,δ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \delta , \theta $$\end{document}, by using the test function method (under suitable sign assumptions on the initial data).
引用
收藏
相关论文
共 50 条