In this paper we find the critical exponent for the global existence (in time) of small data solutions to the Cauchy problem for the semilinear dissipative evolution equations utt+(-Δ)δutt+(-Δ)αu+(-Δ)θut=|ut|p,t≥0,x∈Rn,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} u_{tt}+(-\Delta )^\delta u_{tt}+(-\Delta )^\alpha u+(-\Delta )^\theta u_t=|u_t|^p, \quad t\ge 0,\,\, x\in {\mathbb {R}}^n, \end{aligned}$$\end{document}with p>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p>1$$\end{document}, 2θ∈[0,α]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\theta \in [0, \alpha ]$$\end{document} and δ∈(θ,α]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta \in (\theta ,\alpha ]$$\end{document}. We show that, under additional regularity Hα+δ(Rn)∩Lm(Rn)×H2δ(Rn)∩Lm(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( H^{\alpha +\delta }({\mathbb {R}}^n)\cap L^{m}({\mathbb {R}}^n) \right) \times \left( H^{2\delta }({\mathbb {R}}^n)\cap L^{m}({\mathbb {R}}^n)\right) $$\end{document} for initial data, with m∈(1,2]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m\in (1,2]$$\end{document}, the critical exponent is given by pc=1+2mθn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_c=1+\frac{2m\theta }{n}$$\end{document}. The nonexistence of global solutions in the subcritical cases is proved, in the case of integers parameters α,δ,θ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha , \delta , \theta $$\end{document}, by using the test function method (under suitable sign assumptions on the initial data).