Convergence of a linearly extrapolated BDF2 finite element scheme for viscoelastic fluid flow

被引:0
|
作者
Yunzhang Zhang
Chao Xu
Jiaquan Zhou
机构
[1] Henan University of Science and Technology,School of Mathematics and Statistics
[2] Luoyang Institute of Science and Technology,Faculty of Mathematics and Physics Education
来源
关键词
viscoelastic fluid flow; linearly extrapolated BDF2; mixed finite element; discontinuous Galerkin; stability analysis; error estimate; 65N30; 65N12; 76A10;
D O I
暂无
中图分类号
学科分类号
摘要
The stability and convergence of a linearly extrapolated second order backward difference (BDF2-LE) time-stepping scheme for solving viscoelastic fluid flow in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{d}$\end{document}, d=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d=2,3$\end{document}, are presented in this paper. The time discretization is based on the implicit scheme for the linear term and the two-step linearly extrapolated scheme for the nonlinear term. Mixed finite element (MFE) method is applied for the spatial discretization. The approximations of stress tensor σ, velocity vector u and pressure p are Pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{m}$\end{document}-discontinuous, Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{k}$\end{document}-continuous and Pq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{q}$\end{document}-continuous elements, respectively. Upwinding needed for convection of σ is made by a discontinuous Galerkin (DG) FE method. For the time step △t small enough, the existence of an approximate solution is proven. If m,k⩾d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m, k \geqslant \frac{d}{2}$\end{document}, q+1⩾d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q+1\geqslant\frac{d}{2}$\end{document}, and △t⩽C0hd4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\triangle t \leqslant C_{0} h^{\frac{d}{4}}$\end{document}, then the discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document} errors for the velocity and stress, and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document} error for the pressure, are bounded by C(△t2+hmin{m,k,q+1})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C(\triangle t^{2}+h^{\min\{m,k,q+1\}})$\end{document}, where h denotes the mesh size. The derived theoretical results are supported by numerical tests.
引用
收藏
相关论文
共 50 条