An Orthogonal-Polynomial Approach to First-Hitting Times of Birth–Death Processes

被引:0
|
作者
Erik A. van Doorn
机构
[1] University of Twente,Department of Applied Mathematics
来源
关键词
Birth–death process; First-hitting time; Orthogonal polynomials; Associated polynomials; Markov’s theorem; 60J80; 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper in this journal, Gong, Mao and Zhang, using the theory of Dirichlet forms, extended Karlin and McGregor’s classical results on first-hitting times of a birth–death process on the nonnegative integers by establishing a representation for the Laplace transform E[esTij]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[e^{sT_{ij}}]$$\end{document} of the first-hitting time Tij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{ij}$$\end{document} for any pair of states i and j, as well as asymptotics for E[esTij]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[e^{sT_{ij}}]$$\end{document} when either i or j tends to infinity. It will be shown here that these results may also be obtained by employing tools from the orthogonal-polynomial toolbox used by Karlin and McGregor, in particular associated polynomials and Markov’s theorem.
引用
收藏
页码:594 / 607
页数:13
相关论文
共 50 条