Estimates for the Distributions of the Sums of Subexponential Random Variables

被引:0
|
作者
V. V. Shneer
机构
[1] Novosibirsk; Heriot-Watt University,Sobolev Institute of Mathematics
来源
关键词
subexponential distribution; distribution with long tail; distribution of dominated variation; sums of random variables; random walk; modulated random walk; supremum of random walk;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {S_n } \right\}_{n \geqslant 1} $$ \end{document} be a random walk with independent identically distributed increments \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {\xi _i } \right\}_{i \geqslant 1} $$ \end{document}. We study the ratios of the probabilities P(Sn>x) / P(ξ1 > x) for all n and x. For some subclasses of subexponential distributions we find upper estimates uniform in x for the ratios which improve the available estimates for the whole class of subexponential distributions. We give some conditions sufficient for the asymptotic equivalence P(Sτ > x) ∼ E τ P(ξ1 > x) as x → ∞. Here τ is a positive integer-valued random variable independent of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {\xi _i } \right\}_{i \geqslant 1} $$ \end{document}. The estimates obtained are also used to find the asymptotics of the tail distribution of the maximum of a random walk modulated by a regenerative process.
引用
收藏
页码:1143 / 1158
页数:15
相关论文
共 50 条