Formation of 2D-Layered (CH3NH3)3Sb2I9 Lead-Free Perovskite Phase from CH3NH3I and SbSI: Photodetection Activity in Carbon Based Lateral Devices

被引:0
|
作者
Amit Kumar Pathak
Sudip K. Batabyal
机构
[1] Amrita Vishwa Vidyapeetham,Amrita Centre for Industrial Research & Innovation (ACIRI), Amrita School of Engineering
[2] ,Department of Science, Amrita School of Engineering
[3] Amrita Vishwa Vidyapeetham,undefined
来源
关键词
Lead-free perovskite; methylammonium antimony sulfur diiodide; imidazolium antimony iodide; methylammonium antimony iodide; antimony sulfoiodide; antimony sulfide; carbon; lateral device;
D O I
暂无
中图分类号
学科分类号
摘要
The reaction between methylammonium iodide (MAI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MAI}}$$\end{document}(MA=CH3NH3+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\text{MA}} = {\text{CH}}_{3} {\text{NH}}_{3}^{ + } )$$\end{document}) and antimony sulfoiodide (SbSI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SbSI}}$$\end{document}) in reflux conditions results in the formation of a 2D-layered perovskite phase, methylammonium antimony iodide (MA3Sb2I9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MA}}_{3} {\text{Sb}}_{2} I_{9}$$\end{document}). X-ray diffraction XRD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{\text{XRD}}} \right)$$\end{document} and UV-Vis\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{UV}} - {\text{Vis}}$$\end{document} spectroscopy confirm that in reflux conditions, the reaction between MAI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MAI}}$$\end{document} and SbSI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SbSI}}$$\end{document} in a 2:7 molar ratio (MR(2:7)) obtains the 2D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2D$$\end{document}-layered MA3Sb2I9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MA}}_{3} {\text{Sb}}_{2} I_{9}$$\end{document} lead-free perovskite phase as the main product. The MR(2:7) MAI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{~MAI}}$$\end{document}-SbSI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SbSI}}$$\end{document} reaction product in a carbon matrix in lateral electrode configuration exhibits a relatively high difference between light and dark current Ilight-Idark\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {I_{{{\text{light}}}} - I_{{{\text{dark}}}} } \right)$$\end{document} of ~ 55 µA at 1 V applied bias voltage. The better photoresponse for the MR(2:7) MAI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MAI}}$$\end{document}-SbSI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SbSI}}$$\end{document} reaction product in the presented device configuration indicates that the lead-free 2D-layered perovskite structure (MA3Sb2I9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MA}}_{3} {\text{Sb}}_{2} I_{9}$$\end{document}) found assistance from the carbon materials for improved photogenerated charge carrier harvesting.
引用
收藏
页码:5989 / 5994
页数:5
相关论文
共 50 条
  • [1] Formation of 2D-Layered (CH3NH3)3Sb2I9 Lead-Free Perovskite Phase from CH3NH3I and SbSI: Photodetection Activity in Carbon Based Lateral Devices
    Pathak, Amit Kumar
    Batabyal, Sudip K.
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (10) : 5989 - 5994
  • [2] PROPERTIES AND STRUCTURAL PHASE-TRANSITIONS OF (CH3NH3)3SB2I9
    ZALESKI, J
    JAKUBAS, R
    SOBCZYK, L
    FERROELECTRICS, 1990, 103 : 83 - 90
  • [3] NMR AND DILATOMETRIC STUDIES OF THE STRUCTURAL PHASE-TRANSITIONS OF (CH3NH3)3SB2I9 AND (CH3NH3)3BI2I9 CRYSTALS
    JAKUBAS, R
    DECRESSAIN, R
    LEFEBVRE, J
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1992, 53 (06) : 755 - 759
  • [4] Aliovalent Doping of Lead Halide Perovskites: Exploring the CH3NH3PbI3-(CH3NH3)3Sb2I9 Nanocrystalline Phase Space
    Zhu, Feng
    Gentry, Noreen E.
    Men, Long
    White, Miles A.
    Vela, Javier
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (25): : 14082 - 14090
  • [5] Optoelectronic Properties of (CH3NH3)3Sb2I9 Thin Films for Photovoltaic Applications
    Hebig, Jan-Christoph
    Kuhn, Irina
    Flohre, Jan
    Kirchartz, Thomas
    ACS ENERGY LETTERS, 2016, 1 (01): : 309 - 314
  • [6] Stable Lead-Free (CH3NH3)3Bi2I9 Perovskite for Photocatalytic Hydrogen Generation
    Guo, Yanmei
    Liu, Guoning
    Li, Zexuan
    Lou, Yongbing
    Chen, Jinxi
    Zhao, Yixin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (17) : 15080 - 15085
  • [7] Fabrication of Lead-Free (CH3NH3)3Bi2I9 Perovskite Photovoltaics in Ethanol Solvent
    Li, Haijin
    Wu, Congcong
    Yan, Yongke
    Chi, Bo
    Pu, Jian
    Li, Jian
    Priya, Shashank
    CHEMSUSCHEM, 2017, 10 (20) : 3994 - 3998
  • [8] 2D Layered (CH3NH3)3Sb2ClxI9-x Lead-Free Perovskite for Weak Light Detection
    Pathak, Amit Kumar
    Mukherjee, Sudip
    Batabyal, Sudip K.
    ELECTRONIC MATERIALS LETTERS, 2024, 20 (04) : 425 - 431
  • [9] On the dynamic dielectric behaviour of (CH3NH3)3Sb2I9 (MAIA) single crystals
    Pawlaczyk, C
    Jakubas, R
    Unruh, HG
    SOLID STATE COMMUNICATIONS, 1998, 108 (04) : 247 - 250
  • [10] Exciton and Coherent Phonon Dynamics in the Metal-Deficient Defect Perovskite (CH3NH3)3Sb2I9
    Scholz, Mirko
    Morgenroth, Marius
    Oum, Kawon
    Lenzer, Thomas
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (11): : 5854 - 5863