A goodness-of-fit test for marginal distribution of linear random fields with long memory

被引:0
|
作者
Hira L. Koul
Nao Mimoto
Donatas Surgailis
机构
[1] Michigan State University,
[2] University of Akron,undefined
[3] Vilnius University,undefined
来源
Metrika | 2016年 / 79卷
关键词
Degenerate residual empirical process; Cauchy distribution; Primary 62G07; Secondary 62M10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the problem of fitting a known distribution function to the marginal distribution of a stationary long memory moving average random field observed on increasing ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}-dimensional “cubic” domains when its mean μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and scale σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} are known or unknown. Using two suitable estimators of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and a classical estimate of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, a modification of the Kolmogorov–Smirnov statistic is defined based on the residual empirical process and having a Cauchy-type limit distribution, independent of μ,σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ,\sigma $$\end{document} and the long memory parameter d. Based on this result, a simple goodness-of-fit test for the marginal distribution is constructed, which does not require the estimation of d or any other underlying nuisance parameters. The result is new even for the case of time series, i.e., when ν=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu =1$$\end{document}. Findings of a simulation study investigating the finite sample behavior of size and power of the proposed test is also included in this paper.
引用
收藏
页码:165 / 193
页数:28
相关论文
共 50 条