Cosmological sudden singularities in f(R, T) gravity

被引:0
|
作者
Tiago B. Gonçalves
João Luís Rosa
Francisco S. N. Lobo
机构
[1] Instituto de Astrofísica e Ciências do Espaço,Departamento de Física
[2] Faculdade de Ciências da Universidade de Lisboa,Institute of Physics
[3] Faculdade de Ciências da Universidade de Lisboa,undefined
[4] University of Tartu,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the possibility of finite-time future cosmological singularities appearing in f(R, T) gravity, where R is the Ricci scalar and T is the trace of the stress-energy tensor. We present the theory in both the geometrical and the dynamically equivalent scalar–tensor representation and obtain the respective equations of motion. In a background Friedmann–Lemaître–Robertson–Walker (FLRW) universe with an arbitrary curvature and for a generic C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} function f(R, T), we prove that the conservation of the stress-energy tensor prevents the appearance of sudden singularities in the cosmological context at any order in the time-derivatives of the scale factor. However, if this assumption is dropped, the theory allows for sudden singularities to appear at the level of the third time-derivative of the scale factor a(t), which are compensated by divergences in either the first time-derivatives of the energy density ρ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (t)$$\end{document} or the isotropic pressure p(t). For these cases, we introduce a cosmological model featuring a sudden singularity that is consistent with the current measurements for the cosmological parameters, namely, the Hubble constant, deceleration parameter, and age of the universe, and provide predictions for the still unmeasured jerk and snap parameters. Finally, we analyse the constraints on a particular model of the function f(R, T) that guarantees that the system evolves in a direction favorable to the energy conditions at the divergence time.
引用
收藏
相关论文
共 50 条
  • [1] Cosmological sudden singularities in f (R, T) gravity
    Goncalves, Tiago B.
    Rosa, Joao Luis
    Lobo, Francisco S. N.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (05):
  • [2] Cosmological singularities in f(T, ) gravity
    Trivedi, Oem
    Khlopov, Maxim
    Said, Jackson Levi
    Nunes, Rafael
    [J]. European Physical Journal C, 2023, 83 (11):
  • [3] Curing singularities in cosmological evolution of F(R) gravity
    Appleby, Stephen A.
    Battye, Richard A.
    Starobinsky, Alexei A.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (06):
  • [4] Cosmological models for f (R, T) - A(φ) gravity
    Santos, Joao R. L.
    da Costa, S. Santos
    Santos, Romario S.
    [J]. PHYSICS OF THE DARK UNIVERSE, 2023, 42
  • [5] Cosmological inviability of f (R, T) gravity
    Velten, Hermano
    Carames, Thiago R. P.
    [J]. PHYSICAL REVIEW D, 2017, 95 (12)
  • [6] The anisotropic cosmological models in f(R, T) gravity with Λ(T)
    Chaubey, R.
    Shukla, A. K.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (04):
  • [7] The anisotropic cosmological models in f(R, T) gravity with Λ(T)
    R CHAUBEY
    A K SHUKLA
    [J]. Pramana, 2017, 88
  • [8] Cosmological reconstruction and stability in f(R, T) gravity
    Sharif, M.
    Zubair, M.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (06) : 1 - 30
  • [9] Anisotropic cosmological reconstruction in f(R,T) gravity
    Mishra, B.
    Tarai, Sankarsan
    Tripathy, S. K.
    [J]. MODERN PHYSICS LETTERS A, 2018, 33 (29)
  • [10] Cosmological constant Λ in f(R, T) modified gravity
    Singh, Gyan Prakash
    Bishi, Binaya Kumar
    Sahoo, Pradyumn Kumar
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (05)