Jumping mechanisms of Trojan asteroids in the planar restricted three- and four-body problems

被引:0
|
作者
Kenta Oshima
Tomohiro Yanao
机构
[1] Waseda University,Department of Applied Mechanics and Aerospace Engineering
关键词
Jumping Trojan; Lagrange points; Invariant manifolds; Lobe dynamics; Restricted three-body problem; Restricted four-body problem; Homoclinic tangles;
D O I
暂无
中图分类号
学科分类号
摘要
We explore minimal dynamical mechanisms for the transport of Trojan asteroids between the vicinities of the stable Lagrange points L4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{4}$$\end{document} and L5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{5}$$\end{document} within the framework of the planar restricted three- and four-body problems. This transport, called “jumping” of Trojan asteroids, has been observed numerically in the sophisticated Solar System models. However its dynamical mechanisms have not been fully explored yet. The present study shows that invariant manifolds emanating from an unstable periodic orbit around the unstable Lagrange point L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{3}$$\end{document} mediate the jumping of Trojan asteroids in the Sun–Jupiter planar restricted three-body problem. These invariant manifolds form homoclinic tangles and lobes when projected onto the configuration space through a discrete mapping. Thus the resulted lobe dynamics explains the mechanism for the jumping of Jupiter’s Trojan asteroids. In the Sun–Earth planar restricted three-body problem, on the other hand, invariant manifolds of an unstable periodic orbit around L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{3}$$\end{document} do not exhibit clear homoclinic tangles nor lobes, indicating that the jumping is very difficult to occur. It is then shown that the effect of perturbation of Venus is important for the onset of the jumping of Earth’s Trojan asteroids within the framework of the Sun–Earth–Venus planar restricted four-body problem. The results presented here could shed new insights into the transport mechanism as well as trajectory design associated with L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{3}$$\end{document}, L4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{4}$$\end{document}, and L5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_5$$\end{document}.
引用
收藏
页码:53 / 74
页数:21
相关论文
共 50 条
  • [1] Jumping mechanisms of Trojan asteroids in the planar restricted three- and four-body problems
    Oshima, Kenta
    Yanao, Tomohiro
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2015, 122 (01): : 53 - 74
  • [2] On the nuclear two-, three- and four-body problems
    Rarita, W
    Present, RD
    PHYSICAL REVIEW, 1937, 51 (10): : 0788 - 0798
  • [3] Nuclear three- and four-body systems
    Glockle, W
    Kamada, H
    Witala, H
    Huber, D
    Golak, J
    Miyagawa, K
    Ishikawa, S
    FEW-BODY PROBLEMS IN PHYSICS '95, 1996, : 9 - 20
  • [4] Finiteness in the planar restricted four-body problem
    Kulevich J.L.
    Roberts G.E.
    Smith C.J.
    Qualitative Theory of Dynamical Systems, 2009, 8 (2) : 357 - 370
  • [5] Electromagnetic Breakup of Three- and Four-Body Nuclei
    Leidemann, Winfried
    FEW-BODY SYSTEMS, 2011, 50 (1-4) : 75 - 81
  • [6] Three- and four-body structure of light hypernuclei
    Hiyama, E
    Kamimura, M
    Motoba, T
    Yamada, T
    Yamamoto, Y
    NUCLEAR PHYSICS A, 2001, 684 : 227C - 235C
  • [7] Three- and four-body interactions in colloidal systems
    Dobnikar, J
    Brunner, M
    Baumgartl, J
    Bechinger, C
    von Grünberg, HH
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION, 2004, 5514 : 340 - 351
  • [8] Stability of Three- and Four-Body Coulomb Systems
    Martin, Andre
    Acta Physica Hungarica New Series Heavy Ion Physics, 8 (04): : 285 - 300
  • [9] Three- and four-body structure of light hypernuclei
    Hiyama, E
    Kamimura, M
    Motoba, T
    Yamada, T
    Yamamoto, Y
    ELECTROPHOTOPRODUCTION OF STRANGENESS ON NUCLEONS AND NUCLEI, 2004, : 261 - 269
  • [10] Chaotic transfers in three- and four-body systems
    Gidea, M
    Burgos, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 328 (3-4) : 360 - 366