We develop a sheaf theory approach to toric noncommutative geometry which allows us to formalize the concept of mapping spaces between two toric noncommutative spaces. As an application, we study the ‘internalized’ automorphism group of a toric noncommutative space and show that its Lie algebra has an elementary description in terms of braided derivations.
机构:
Univ Luxembourg, Unite Rech Math, Luxembourg, Grand Duchy, LuxembourgUniv Luxembourg, Unite Rech Math, Luxembourg, Grand Duchy, Luxembourg
Brain, Simon
Landi, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Trieste, Dipartimento Matemat, I-34127 Trieste, Italy
Ist Nazl Fis Nucl, Sez Trieste, Trieste, ItalyUniv Luxembourg, Unite Rech Math, Luxembourg, Grand Duchy, Luxembourg
Landi, Giovanni
van Suijlekom, Walter D.
论文数: 0引用数: 0
h-index: 0
机构:
Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, NL-6525 AJ Nijmegen, NetherlandsUniv Luxembourg, Unite Rech Math, Luxembourg, Grand Duchy, Luxembourg