Jamming occurs in granular materials, emulsions, dense suspensions, and other amorphous, particulate systems. When the packing fraction ϕ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi$$\end{document}, defined as the ratio of particle volume to system volume, is increased past a critical value ϕc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi _c$$\end{document}, a liquid–solid phase transition occurs, and grains are no longer able to rearrange. Previous studies have shown evidence of spatial correlations that diverge near ϕ=ϕc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi = \phi _c$$\end{document}, but there has been no explicit spatial renormalization group (RG) scheme that has captured this transition. Here, I present a candidate for such a scheme, using a block-spin-like transformation of a randomly vacated lattice of grains. I define a real-space RG transformation based on local mechanical stability. This model displays a critical packing fraction ϕc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi _c$$\end{document} and gives estimates of critical exponents in two and three dimensions.