Homomorphisms between JC*–algebras and Lie C*–algebras

被引:0
|
作者
Chun Gil Park
Jin Chuan Hou
Sei Qwon Oh
机构
[1] Chungnam National University,Department of Mathematics
[2] Shanxi Teachers University,Department of Mathematics
[3] Shanxi University,Department of Mathematics
[4] Chungnam National University,Department of Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
∗–homomorphism; *–algbera; Lie ; *–algebra; Stability; Linear functional equation; 39B52; 46L05; 47C15; 17C50;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that every almost ∗–homomorphism h : \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript A}$$\end{document} → ℬ of a unital JC*–algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript A}$$\end{document} to a unital JC*–algebra ℬ is a ∗–homomorphism when h(rx) = rh(x) (r > 1) for all x ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript A}$$\end{document} , and that every almost linear mapping h : \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript A}$$\end{document} → ℬ is a ∗–homomorphism when h(2nu ∘y) = h(2nu) ∘ h(y), h(3nu ∘ y) = h(3nu) ∘ h(y) or h(qnu ∘ y) = h(qnu) ∘ h(y) for all unitaries u ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript A}$$\end{document} , all y ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript A}$$\end{document} , and n = 0, 1, . . . . Here the numbers 2, 3, q depend on the functional equations given in the almost linear mappings.
引用
收藏
页码:1391 / 1398
页数:7
相关论文
共 50 条