A spatial-temporal iterative tensor decomposition technique for action and gesture recognition

被引:0
|
作者
Yuting Su
Haiyi Wang
Peiguang Jing
Chuanzhong Xu
机构
[1] Tianjin University,School of Electronic Information Engineering
来源
Multimedia Tools and Applications | 2017年 / 76卷
关键词
Gesture recognition; Tensor decomposition; Spatial-temporal iterative; Video sequences;
D O I
暂无
中图分类号
学科分类号
摘要
Classification of video sequences is an important task with many applications in video search and action recognition. As opposed to some traditional approaches that transform original video sequences into forms of visual feature vectors, tensor-based methods have been proposed for classifying video sequences with natural representation of original data. However, one obvious limitation of tensor-based methods is that the input video sequences are often required to be preprocessed with a unified length of time. In this paper, we propose a technique for handling classification of video sequences in unequal length of time, namely Spatial-Temporal Iterative Tensor Decomposition (S-TITD) for uniform length. The proposed framework contains two primary steps. We first represent original video sequences as a third-order tensor and perform Tucker-2 decomposition to obtain the reduced-dimension core tensor. Then we encode the third order of core tensor to a uniform length by adaptively selecting the most informative slices. Notably, the above two steps are embedded into a dynamic learning framework to guarantee the proposed method has the ability of updating results over time. We conduct a series of experiments on three public datasets in gesture and action recognition, and the experimental results show that the proposed S-TITD approach achieves better performances than the state-of-the-art algorithms.
引用
收藏
页码:10635 / 10652
页数:17
相关论文
共 50 条
  • [1] A spatial-temporal iterative tensor decomposition technique for action and gesture recognition
    Su, Yuting
    Wang, Haiyi
    Jing, Peiguang
    Xu, Chuanzhong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (08) : 10635 - 10652
  • [2] Adaptive recognition method of human skeleton action with spatial-temporal tensor fusion
    Jian Z.
    Nan J.
    Liu X.
    Dai W.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (06): : 74 - 85
  • [3] Spatial-Temporal Attention for Action Recognition
    Sun, Dengdi
    Wu, Hanqing
    Ding, Zhuanlian
    Luo, Bin
    Tang, Jin
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 854 - 864
  • [4] A Local Spatial-Temporal Synchronous Network to Dynamic Gesture Recognition
    Zhao, Dongdong
    Yang, Qinglian
    Zhou, Xingwen
    Li, Hongli
    Yan, Shi
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (05) : 2226 - 2233
  • [5] Joint spatial-temporal attention for action recognition
    Yu, Tingzhao
    Guo, Chaoxu
    Wang, Lingfeng
    Gu, Huxiang
    Xiang, Shiming
    Pan, Chunhong
    PATTERN RECOGNITION LETTERS, 2018, 112 : 226 - 233
  • [6] Spatial-Temporal Neural Networks for Action Recognition
    Jing, Chao
    Wei, Ping
    Sun, Hongbin
    Zheng, Nanning
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2018, 2018, 519 : 619 - 627
  • [7] Spatial-temporal pooling for action recognition in videos
    Wang, Jiaming
    Shao, Zhenfeng
    Huang, Xiao
    Lu, Tao
    Zhang, Ruiqian
    Lv, Xianwei
    NEUROCOMPUTING, 2021, 451 : 265 - 278
  • [8] Spatial-temporal interaction module for action recognition
    Luo, Hui-Lan
    Chen, Han
    Cheung, Yiu-Ming
    Yu, Yawei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [9] STSD: spatial-temporal semantic decomposition transformer for skeleton-based action recognition
    Cui, Hu
    Hayama, Tessai
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [10] Extraction of spatial-temporal features for vision-based gesture recognition
    Yu Huang
    Guangyou Xu
    Yuanxin Zhu
    Journal of Computer Science and Technology, 2000, 15 : 64 - 72