Endomorphism algebras and Igusa–Todorov algebras

被引:0
|
作者
Zhaoyong Huang
Juxiang Sun
机构
[1] Nanjing University,Department of Mathematics
[2] Shangqiu Normal University,School of Mathematics and Information Science
来源
Acta Mathematica Hungarica | 2013年 / 140卷
关键词
endomorphism algebra; Igusa–Todorov algebra; syzygy-finite algebra; syzygy module; finitistic dimension; 16E10; 16E05; 16G10;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be an Artin algebra. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V\in \operatorname{mod} A$\end{document} such that the global dimension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{End}_{A}V$\end{document} is at most 3, then for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${M\in \operatorname{add}_{A}V}$\end{document}, both B and Bop are 2-Igusa–Todorov algebras, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${B=\operatorname{End}_{A}M}$\end{document}. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${P\in \operatorname{mod} A}$\end{document} be projective and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${B=\operatorname{End}_{A}P}$\end{document} such that the projective dimension of P as a right B-module is at most n(<∞). If A is an m-syzygy-finite algebra (resp. an m-Igusa–Todorov algebra), then B is an (m+n)-syzygy-finite algebra (resp. an (m+n)-Igusa–Todorov algebra); in particular, the finitistic dimension of B is finite in both cases. Some applications of these results are given.
引用
收藏
页码:60 / 70
页数:10
相关论文
共 50 条
  • [1] Endomorphism algebras and Igusa-Todorov algebras
    Huang, Z.
    Sun, J.
    [J]. ACTA MATHEMATICA HUNGARICA, 2013, 140 (1-2) : 60 - 70
  • [2] IGUSA-TODOROV ENDOMORPHISM ALGEBRAS
    Wei, Jiaqun
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (09) : 3823 - 3832
  • [3] On Lat-Igusa-Todorov algebras
    Marcos Barrios
    Gustavo Mata
    [J]. São Paulo Journal of Mathematical Sciences, 2022, 16 : 693 - 711
  • [4] On Lat-Igusa-Todorov algebras
    Barrios, Marcos
    Mata, Gustavo
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 693 - 711
  • [5] Generalised Igusa-Todorov functions and Lat-Igusa-Todorov algebras
    Bravo, Diego
    Lanzilotta, Marcelo
    Mendoza, Octavio
    Vivero, Jose
    [J]. JOURNAL OF ALGEBRA, 2021, 580 : 63 - 83
  • [6] Igusa-Todorov and LIT algebras on Morita context algebras
    Barrios, Marcos
    Mata, Gustavo
    [J]. JOURNAL OF ALGEBRA, 2024, 647 : 436 - 457
  • [7] Finitistic dimension and Igusa-Todorov algebras
    Wei, Jiaqun
    [J]. ADVANCES IN MATHEMATICS, 2009, 222 (06) : 2215 - 2226
  • [8] Triangular lat-igusa-todorov algebras
    Vivero, Jose Armando
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2022, 92 (01): : 53 - 67
  • [9] Igusa-Todorov functions for Artin algebras
    Lanzilotta, Marcelo
    Mata, Gustavo
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (01) : 202 - 212
  • [10] Triangular lat-igusa-todorov algebras
    José Armando Vivero
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2022, 92 : 53 - 67