CO2 rebreathing model in COPD: blood-to-gas equilibration

被引:0
|
作者
Jack A. Loeppky
Milton V. Icenogle
Arvind Caprihan
Marcos F. Vidal Melo
Stephen A. Altobelli
机构
[1] VA Medical Center,Cardiology Section
[2] New Mexico Resonance,Department of Anesthesia and Critical Care
[3] Massachusetts General Hospital,undefined
[4] Harvard Medical School,undefined
来源
关键词
Body CO; stores; Buffering capacity; Gas exchange; Ventilatory response to CO; Ventilation/perfusion heterogeneity;
D O I
暂无
中图分类号
学科分类号
摘要
Rebreathing in a closed system can be used to estimate mixed venous \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{{\rm CO}_{2}}\;(P\bar{v}_{{\text{CO}}_2})$$\end{document} and cardiac output, but these estimates are affected by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{\rm A}/\dot{Q}$$\end{document} heterogeneity. The purpose of this study was to validate a mathematical model of CO2 exchange during CO2 rebreathing in 29 patients with chronic obstructive pulmonary disease (COPD), with baseline arterial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{{\rm CO}_{2}}\;(\hbox{Pa}_{{\rm CO}_{2}})$$\end{document} ranging from 28 to 60 mmHg. Rebreathing increased end-tidal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{{\rm CO}_{2}}\;(\hbox{PET}_{{\rm CO}_{2}})$$\end{document} by 20 mmHg over 2.2 min. This model employed baseline values for inspired (bag) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{{\rm CO}_{2}},$$\end{document} estimated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\bar{v}_{{\text{CO}}_2},$$\end{document} distribution of ventilation and blood flow in one high \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{\rm A}/\dot{Q}$$\end{document} and one low \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{\rm A}/\dot{Q}$$\end{document} compartment, the ventilation increase and conservation of mass equations to simulate time courses of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{PI}_{{\rm CO}_{2}},\hbox{PET}_{{\rm CO}_{2}},\; P\bar{v}_{{\text{CO}}_{2}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{Pa}_{{\rm CO}_{2}}.$$\end{document} Measured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{PI}_{{\rm CO}_{2}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{PET}_{{\rm CO}_{2}}$$\end{document} during rebreathing differed by an average (SEM) of 1.4 (0.4) mmHg from simulated values. By end of rebreathing, predicted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\bar{v}_{{\text{CO}}_2}$$\end{document} was lower than measured and predicted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{Pa}_{{\rm CO}_{2}},$$\end{document} indicating gas to blood CO2 flux. Estimates of the ventilatory response to CO2, quantified as the slope (S) of the ventilation increase versus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{PET}_{{\rm CO}_{2}},$$\end{document} were inversely related to gas-to-blood \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{{\rm CO}_{2}}$$\end{document} disequilibria due to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{\rm A}/\dot{Q}$$\end{document} heterogeneity and buffer capacity (BC), but not airflow limitation. S may be corrected for these artifacts to restore S as a more valid noninvasive index of central CO2 responsiveness. We conclude that a rebreathing model incorporating baseline \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{\rm A}/\dot{Q}$$\end{document} heterogeneity and BC can simulate gas and blood \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{{\rm CO}_{2}}$$\end{document} in patients with COPD, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{V}_{\rm A}/\dot{Q}$$\end{document} variations are large and variable.
引用
收藏
页码:450 / 460
页数:10
相关论文
共 50 条
  • [1] CO2 rebreathing model in COPD:: blood-to-gas equilibration
    Loeppky, Jack A.
    Icenogle, Milton V.
    Caprihan, Arvind
    Melo, Marcos F. Vidal
    Altobelli, Stephen A.
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2006, 98 (05) : 450 - 460
  • [2] GAS-BLOOD CO2 EQUILIBRATION IN DOG LUNGS DURING REBREATHING
    SCHEID, P
    TEICHMANN, J
    ADARO, F
    PIIPER, J
    JOURNAL OF APPLIED PHYSIOLOGY, 1972, 33 (05) : 582 - +
  • [3] CO2 EQUILIBRATION BETWEEN ALVEOLAR GAS AND PULMONARY CAPILLARY BLOOD DURING REBREATHING
    PIIPER, J
    SCHEID, P
    TEICHMAN.J
    ADARO, F
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1972, : R5 - &
  • [4] REBREATHING EQUILIBRATION OF CO2 DURING EXERCISE
    JONES, NL
    REBUCK, AS
    JOURNAL OF APPLIED PHYSIOLOGY, 1973, 35 (04) : 538 - 541
  • [5] BLOOD-GAS EQUILIBRATION OF CO2 AND O-2 IN LUNGS OF AWAKE DOGS DURING PROLONGED REBREATHING
    SCOTTO, P
    RIEKE, H
    SCHMITT, HJ
    MEYER, M
    PIIPER, J
    JOURNAL OF APPLIED PHYSIOLOGY, 1984, 57 (05) : 1354 - 1359
  • [6] BLOOD-GAS EQUILIBRATION OF CO2 IN LUNGS
    PIIPER, J
    MEYER, M
    BULLETIN EUROPEEN DE PHYSIOPATHOLOGIE RESPIRATOIRE-CLINICAL RESPIRATORY PHYSIOLOGY, 1982, 18 (06): : P159 - P159
  • [7] BLOOD-GAS CO2 EQUILIBRATION IN PARABRONCHIAL LUNGS OF BIRDS
    MEYER, M
    WORTH, H
    SCHEID, P
    JOURNAL OF APPLIED PHYSIOLOGY, 1976, 41 (03) : 302 - 310
  • [8] MECHANISMS INVOLVED IN GAS BLOOD CO2 EQUILIBRATION IN AVIAN LUNGS
    PIIPER, J
    JOURNAL OF PHYSIOLOGY-LONDON, 1976, 260 (02): : P36 - P36
  • [9] GAS-BLOOD CO2 EQUILIBRATION IN DOG LUNGS IN HYPERCAPNIA
    SCHEID, P
    MEYER, M
    PIIPER, J
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1978, 377 : R21 - R21
  • [10] REBREATHING METHODS FOR MEASUREMENT OF BLOOD CO2 TENSION
    HOWELL, JBL
    BRITISH JOURNAL OF ANAESTHESIA, 1962, 34 (09) : 617 - &