Let G be a finite group and let
p be a prime. We show that the unit
group of the integral group ring
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \mathbb{Z}[G] $$
\end{document}
contains the free product Zp * Z
if and only if G has a noncentral element
of order p. Moreover, when this occurs, then the
Zp-part of the free product can be taken to be a suitable noncentral subgroup
of G of order p.