Trajectory attractor of a reaction-diffusion system with a series of zero diffusion coefficients

被引:0
|
作者
V. V. Chepyzhov
M. I. Vishik
机构
[1] RAS (Kharkevich Institute),Institute for Information Transmission Problems
关键词
Mathematical Physic; Weak Solution; Vector Function; Global Attractor; Diffusion System;
D O I
暂无
中图分类号
学科分类号
摘要
We study a reaction-diffusion system of N equations with k nonzero and N − k zero diffusion coefficients. More exactly, the first k equations of the system contain the terms aiΔui − fj(u, v), i = 1, …, k, with the diffusion coefficient ai > 0. The right-hand sides of the other N − k equations contain only nonlinear interaction functions −hj(u, v), j = k + 1, …, N, with zero diffusion. Here u = (u1, …, uk) and v = (υk+1, …, υN) are unknown concentration vectors. Under appropriate assumptions on the interaction functions f(·) and h(·), we construct the trajectory attractor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A}^0 $$\end{document} of this reaction-diffusion system. We also find the trajectory attractors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A}^\delta $$\end{document}, δ = (δ1, …, δk), for the analogous reaction-diffusion systems having the terms δjΔυj − hj (u, v), j = k + 1, …, N, with small diffusion coefficients δj ⩾ 0 in the last N − k equations. We prove that the trajectory attractors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A}^\delta $$\end{document} converge to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A}^0 $$\end{document} (in an appropriate topology) as δ → 0+.
引用
收藏
页码:208 / 227
页数:19
相关论文
共 50 条
  • [1] Trajectory attractor of a reaction-diffusion system with a series of zero diffusion coefficients
    Chepyzhov, V. V.
    Vishik, M. I.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (02) : 208 - 227
  • [2] Trajectory attractor for a reaction-diffusion system with a small diffusion coefficient
    Vishik, M. I.
    Chepyzhov, V. V.
    [J]. DOKLADY MATHEMATICS, 2009, 79 (02) : 227 - 230
  • [3] Trajectory attractor for a reaction-diffusion system with a small diffusion coefficient
    M. I. Vishik
    V. V. Chepyzhov
    [J]. Doklady Mathematics, 2009, 79 : 227 - 230
  • [4] TRAJECTORY ATTRACTOR FOR REACTION-DIFFUSION SYSTEM WITH DIFFUSION COEFFICIENT VANISHING IN TIME
    Chepyzhov, Vladimir V.
    Vishik, Mark I.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (04) : 1493 - 1509
  • [5] Strong trajectory attractor for a dissipative reaction-diffusion system
    M. I. Vishik
    S. V. Zelik
    V. V. Chepyzhov
    [J]. Doklady Mathematics, 2010, 82 : 869 - 873
  • [6] Strong Trajectory Attractor for a Dissipative Reaction-Diffusion System
    Vishik, M. I.
    Zelik, S. V.
    Chepyzhov, V. V.
    [J]. DOKLADY MATHEMATICS, 2010, 82 (03) : 869 - 873
  • [7] Trajectory attractor for a system of two reaction-diffusion equations with diffusion coefficient δ(t) → 0+ as t → + ∞
    M. I. Vishik
    V. V. Chepyzhov
    [J]. Doklady Mathematics, 2010, 81 : 196 - 200
  • [8] Trajectory attractor for a system of two reaction-diffusion equations with diffusion coefficient δ(t) → 0+as t → plus a
    Vishik, M. I.
    Chepyzhov, V. V.
    [J]. DOKLADY MATHEMATICS, 2010, 81 (02) : 196 - 200
  • [9] The attractor for a nonlinear reaction-diffusion system in an unbounded domain
    Efendiev, MS
    Zelik, SV
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (06) : 625 - 688
  • [10] Attractor for a Reaction-Diffusion System Modeling Cancer Network
    Chen, Xueyong
    Shen, Jianwei
    Zhou, Hongxian
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,