Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry

被引:0
|
作者
Barilari D. [1 ]
机构
[1] SISSA, Via Bonomea 265, Trieste
基金
欧洲研究理事会;
关键词
Heat Kernel; Heisenberg Group; Orthonormal Frame; Reeb Vector; Local Orthonormal Frame;
D O I
10.1007/s10958-013-1585-1
中图分类号
学科分类号
摘要
In this paper, we study the small time asymptotics for the heat kernel on a sub-Riemannian manifold, using a perturbative approach. We explicitly compute, in the case of a 3D contact structure, the first two coefficients of the small time asymptotics expansion of the heat kernel on the diagonal, expressing them in terms of the two basic functional invariants χ and κ defined on a 3D contact structure. © 2013 Springer Science+Business Media New York.
引用
收藏
页码:391 / 411
页数:20
相关论文
共 50 条
  • [1] Heat trace asymptotics on equiregular sub-Riemannian manifolds
    Inahama, Yuzuru
    Taniguchi, Setsuo
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2020, 72 (04) : 1049 - 1096
  • [2] Steiner and tube formulae in 3D contact sub-Riemannian geometry
    Barilari, Davide
    Bossio, Tania
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (07)
  • [3] ON THE INDUCED GEOMETRY ON SURFACES IN 3D CONTACT SUB-RIEMANNIAN MANIFOLDS
    Barilari, Davide
    Boscain, Ugo
    Cannarsa, Daniele
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [4] Sub-Riemannian Curvature in Contact Geometry
    Agrachev, Andrei
    Barilari, Davide
    Rizzi, Luca
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 366 - 408
  • [5] Sub-Riemannian Curvature in Contact Geometry
    Andrei Agrachev
    Davide Barilari
    Luca Rizzi
    [J]. The Journal of Geometric Analysis, 2017, 27 : 366 - 408
  • [6] SMALL-TIME HEAT KERNEL ASYMPTOTICS AT THE SUB-RIEMANNIAN CUT LOCUS
    Barilari, Davide
    Boscain, Ugo
    Neel, Robert W.
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2012, 92 (03) : 373 - 416
  • [7] Heat content asymptotics for sub-Riemannian manifolds
    Rizzi, Luca
    Rossi, Tommaso
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 148 : 267 - 307
  • [8] A parallelism for contact conformal sub-Riemannian geometry
    Falbel, E
    Veloso, JM
    [J]. FORUM MATHEMATICUM, 1998, 10 (04) : 453 - 478
  • [9] On the sub-Riemannian geometry of contact Anosov flows
    Simic, Slobodan N.
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2016, 8 (01) : 187 - 205
  • [10] Sub-Riemannian geometry
    Kupka, I
    [J]. ASTERISQUE, 1997, (241) : 351 - 380