Kolmogorov–Petrovskii–Piskunov equation;
generalized Fisher equation;
Abel’s equation of the second kind;
Fuchs–Kowalewski–Painlevé test;
self-similar solutions;
traveling waves;
intermediate asymptotic regime;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider quasi-stationary solutions of a problem without initial conditions for the Kolmogorov–Petrovskii–Piskunov (KPP) equation, which is a quasilinear parabolic one arising in the modeling of certain reaction–diffusion processes in the theory of combustion, mathematical biology, and other areas of natural sciences. A new efficiently numerically implementable analytical representation is constructed for self-similar plane traveling-wave solutions of the KPP equation with a special right-hand side. Sufficient conditions for an auxiliary function involved in this representation to be analytical for all values of its argument, including the endpoints, are obtained. Numerical results are obtained for model examples.
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Ullah, Ikram
Shah, Kamal
论文数: 0引用数: 0
h-index: 0
机构:
Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia
Lebanese Amer Univ, Dept Comp Sci & Math, Byblos, LebanonCent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
Shah, Kamal
Abdeljawad, Thabet
论文数: 0引用数: 0
h-index: 0
机构:
Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia
China Med Univ, Dept Med Res, Taichung 40402, Taiwan
Sefako Makgatho Hlth Sci Univ, Sch Sci & Technol, Dept Math & Appl Math, Ga Rankuwa, South AfricaCent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China