Inverse Mean Curvature Flows in Warped Product Manifolds

被引:0
|
作者
Hengyu Zhou
机构
[1] Sun Yat-sen University,Department of Mathematics
来源
关键词
Inverse mean curvature flow; Warped product manifold; Asymptotic behavior; Primary 53C44; Secondary 53C42; 35J93; 35B45; 35K93;
D O I
暂无
中图分类号
学科分类号
摘要
We study inverse mean curvature flows of starshaped, mean convex hypersurfaces in warped product manifolds with a positive warping factor ϕ(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (r)$$\end{document}. If ϕ′(r)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi '(r)>0$$\end{document} and ϕ′′(r)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ''(r)\ge 0$$\end{document}, we show that these flows exist for all times, remain starshaped, and mean convex. Plus the positivity of ϕ′′(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ''(r)$$\end{document} and a curvature condition we obtain a lower positive bound of mean curvature along these flows independent of the initial mean curvature. We also give a sufficient condition to extend the asymptotic behavior of these flows in Euclidean spaces into some more general warped product manifolds.
引用
收藏
页码:1749 / 1772
页数:23
相关论文
共 50 条