SINGULAR RIEMANNIAN FOLIATIONS AND THEIR QUADRATIC BASIC POLYNOMIALS

被引:0
|
作者
R. A. E. MENDES
M. RADESCHI
机构
[1] Universität zu Köln,Mathematisches Institut
[2] University of Notre Dame,Department of Mathematics
来源
Transformation Groups | 2020年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a new link between the Invariant Theory of infinitesimal singular Riemannian foliations and Jordan algebras. This, together with an inhomogeneous version of Weyl's First Fundamental Theorems, provides a characterization of the recently discovered Clifford foliations in terms of basic polynomials. This link also yields new structural results about infinitesimal foliations, such as the existence of non-trivial symmetries.
引用
收藏
页码:251 / 277
页数:26
相关论文
共 50 条