The Representation of a C0-Semigroup of Linear Operators in a Banach Space on the Set of Entire Vectors of its Generator

被引:0
|
作者
V. M. Gorbachuk
M. L. Gorbachuk
机构
[1] National Tecnical University ”KPI”,Institute of Mathematics
[2] National Academy of Sciences of Ukraine,undefined
来源
Integral Equations and Operator Theory | 2016年 / 85卷
关键词
-semigroup; Locally analytic vector-valued function; Cauchy problem; Entire vector of a closed operator; Order and degree of an entire vector; Order and type of an entire vector-valued function; Entire vector-valued function of exponential type; Inductive and projective limits of Banach spaces; Primary 34G10; Secondary 47D06;
D O I
暂无
中图分类号
学科分类号
摘要
For a C0-semigroup {U(t)}t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{U(t)\}_{t \geq 0}}$$\end{document} of linear operators in a Banach space B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak{B}}}$$\end{document} with generator A, we describe the set of elements x∈B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in {\mathfrak{B}}}$$\end{document} whose orbits U(t)x can be extended to entire B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak{B}}}$$\end{document}-valued functions of a finite order and a finite type, and establish the conditions under which this set is dense in B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak{B}}}$$\end{document}. The Hille problem of finding vectors x∈B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in {\mathfrak{B}}}$$\end{document} such that there exists the limit limn→∞I+tAnnx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lim\limits_{n \to \infty}\left(I + \frac{tA}{n}\right)^{n}x}$$\end{document} is also solved in the paper. We prove that this limit exists if and only if x is an entire vector of the operator A, and if this is the case, then it coincides with U(t)x.
引用
收藏
页码:497 / 512
页数:15
相关论文
共 50 条