Let bℓ(n) denote the number of ℓ-regular partitions of n. In 2012, using the theory of modular forms, Furcy and Penniston presented several infinite families of congruences modulo 3 for some values of ℓ. In particular, they showed that for α, n ≥ 0, b25 (32α+3n+2 · 32α+2-1) ≡ 0 (mod 3). Most recently, congruences modulo powers of 5 for c5(n) was proved by Wang, where cN(n) counts the number of bipartitions (λ1,λ2) of n such that each part of λ2 is divisible by N. In this paper, we prove some interesting Ramanujan-type congruences modulo powers of 5 for b25(n), B25(n), c25(n) and modulo powers of 7 for c49(n). For example, we prove that for j ≥ 1, c25(52jn+11⋅52j+1312)≡0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${c_{25}}\left( {{5^{2j}}n + \frac{{11 \cdot {5^{2j}} + 13}}{{12}}} \right) \equiv 0$$\end{document} (mod 5j+1), c49(72jn+11⋅72j+2512)≡0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${c_{49}}\left( {{7^{2j}}n + \frac{{11 \cdot {7^{_{2j}}} + 25}}{{12}}} \right) \equiv 0$$\end{document} (mod 7j+1) and b25 (32α+3 · n+2 · 32α+2-1) ≡ 0 (mod 3 · 52j-1).