Stabilized mixed finite element model for the 2D nonlinear incompressible viscoelastic fluid system

被引:0
|
作者
Zhendong Luo
Junqiang Gao
机构
[1] North China Electric Power University,School of Mathematics and Physics
[2] North China Electric Power University,School of Control and Computer Engineering
来源
关键词
stabilized mixed finite element model; parameter-free and two local Gauss integrals; two-dimensional nonlinear incompressible viscoelastic fluid system; existence and uniqueness as well as convergence; 65N30; 35Q10;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we first establish a stabilized mixed finite element (SMFE) model based on parameter-free and two local Gauss integrals for the two-dimensional (2D) nonlinear incompressible viscoelastic fluid system. And then, we prove the existence, uniqueness, and convergence of the SMFE solutions. Finally, we use a numerical example to verify the correctness of the previous theoretical results.
引用
收藏
相关论文
共 50 条
  • [1] Stabilized mixed finite element model for the 2D nonlinear incompressible viscoelastic fluid system
    Luo, Zhendong
    Gao, Junqiang
    BOUNDARY VALUE PROBLEMS, 2017,
  • [2] Stabilized finite volume element method for the 2D nonlinear incompressible viscoelastic flow equation
    Hong Xia
    Zhendong Luo
    Boundary Value Problems, 2017
  • [3] Stabilized finite volume element method for the 2D nonlinear incompressible viscoelastic flow equation
    Xia, Hong
    Luo, Zhendong
    BOUNDARY VALUE PROBLEMS, 2017,
  • [4] Implementation of 2D incompressible viscoelastic analysis in extended finite element method
    Gu, Zhi-Xu
    Zheng, Jian
    Peng, Wei
    Yin, Jun-Hui
    Gu, Z.-X. (lemberry@163.com), 1600, Journal of Solid Rocket Technology, P.O. Box 120, Xi'an, 710025, China (36): : 626 - 631
  • [5] Stabilized mixed finite element method for a quasistatic Maxwell viscoelastic model
    Min, Ya
    Feng, Minfu
    APPLIED NUMERICAL MATHEMATICS, 2023, 193 : 22 - 42
  • [6] A stabilized mixed finite element method for nearly incompressible elasticity
    Masud, A
    Xia, KM
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2005, 72 (05): : 711 - 720
  • [7] Stabilized finite element method for the viscoelastic Oldroyd fluid flows
    Wang, Kun
    Si, Zhiyong
    Yang, Yanfang
    NUMERICAL ALGORITHMS, 2012, 60 (01) : 75 - 100
  • [8] Stabilized finite element method for the viscoelastic Oldroyd fluid flows
    Kun Wang
    Zhiyong Si
    Yanfang Yang
    Numerical Algorithms, 2012, 60 : 75 - 100
  • [9] Global existence for a 2D incompressible viscoelastic model with small strain
    Lei, Zhen
    Liu, Chun
    Zhou, Yi
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (03) : 595 - 616
  • [10] Stabilized lowest equal-order mixed finite element method for the Oseen viscoelastic fluid flow
    Shahid Hussain
    Md. Abdullah Al Mahbub
    Nasrin Jahan Nasu
    Haibiao Zheng
    Advances in Difference Equations, 2018