A note on entanglement entropy, coherent states and gravity

被引:0
|
作者
Madhavan Varadarajan
机构
[1] Raman Research Institute,
来源
关键词
Coherent states in curved spacetime; Entanglement entropy; Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
The entanglement entropy of a free quantum field in a coherent state is independent of its stress energy content. We use this result to highlight the fact that while the Einstein equations for first order variations about a locally maximally symmetric vacuum state of geometry and quantum fields seem to follow from Jacobson’s principle of maximal vacuum entanglement entropy, their possible derivation from this principle for the physically relevant case of finite but small variations remains an open issue. We also apply this result to the context of Bianchi’s identification, independent of unknown Planck scale physics, of the first order variation of Bekenstein–Hawking area with that of vacuum entanglement entropy. We argue that under certain technical assumptions this identification seems not to be extendible to the context of finite but small variations to coherent states. Our particular method of estimation of entanglement entropy variation reveals the existence of certain contributions over and above those of References Jacobson (arXiv:1505.04753, 2015), Bianchi (arXiv:1211.0522 [gr-qc], 2012). We discuss the sense in which these contributions may be subleading to those in References Jacobson (arXiv:1505.04753, 2015), Bianchi (arXiv:1211.0522 [gr-qc], 2012).
引用
收藏
相关论文
共 50 条