Relations with a fixed interval exchange transformation

被引:0
|
作者
Magali Jay
机构
[1] Aix Marseille Université,Institut de Mathématiques de Marseille, I2M
来源
Geometriae Dedicata | 2024年 / 218卷
关键词
Interval exchange transformations; Free group of rank 2; Affine interval exchange transformations; 37E05; 20E07; 28D15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the group of all interval exchange transformations (IETs). Katok asked whether it contains a free subgroup. We show that for every IET S, there exists a dense open set Ω(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (S)$$\end{document} of admissible IETs such that the group generated by S and any T∈Ω(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in \Omega (S)$$\end{document} is not free of rank 2. This extends a result by Dahmani et al. (Groups Geom Dyn 7(4):883–910, 2013): the group generated by a generic pair of elements of IET([0;1)) is not free (assuming a suitable condition on the underlying permutation).
引用
收藏
相关论文
共 50 条