Uniqueness of Positive Solutions of Δu+f(u)=0 in ℝN, N≦3

被引:0
|
作者
Carmen Cortázar
Manuel Elgueta
Patricio Felmer
机构
[1] Facultad de Matemáticas,
[2] Universidad Católica,undefined
[3] Casilla 306 Correo 22,undefined
[4] Santiago,undefined
[5] Chile,undefined
[6] Departamento de Ing. Matemática,undefined
[7] F.C.F.M.,undefined
[8] Universidad de Chile,undefined
[9] Casilla 170 Correo 3,undefined
[10] Santiago,undefined
[11] Chile,undefined
关键词
Differential Equation; Growth Condition; Partial Differential Equation; Large Class; Careful Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We study the uniqueness of radial ground states for the semilinear elliptic partial differential equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Delta u+f(u)=0 \eqno{(*)}$$\end{document} in ℝN. We assume that the function f has two zeros, the origin and u0>0. Above u0 the function f is positive, is locally Lipschitz continuous and satisfies convexity and growth conditions of a superlinear nature. Below u0, f is assumed to be non-positive, non-identically zero and merely continuous. Our results are obtained through a careful analysis of the solutions of an associated initial‐value problem, and the use of a monotone separation theorem. It is known that, for a large class of functions f, the ground states of (*) are radially symmetric. In these cases our result implies that (*) possesses at most one ground state.
引用
收藏
页码:127 / 141
页数:14
相关论文
共 50 条