Higher complexity search problems for bounded arithmetic and a formalized no-gap theorem

被引:0
|
作者
Neil Thapen
机构
[1] Academy of Sciences of the Czech Republic,Institute of Mathematics
来源
关键词
Bounded arithmetic; Proof complexity; Search problems; 03F30; 68Q15; 03F20;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new characterization of the strict \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall {\Sigma^b_j}$$\end{document} sentences provable using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^b_k}$$\end{document} induction, for 1 ≤ j ≤ k. As a small application we show that, in a certain sense, Buss’s witnessing theorem for strict \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^b_k}$$\end{document} formulas already holds over the relatively weak theory PV. We exhibit a combinatorial principle with the property that a lower bound for it in constant-depth Frege would imply that the narrow CNFs with short depth j Frege refutations form a strict hierarchy with j, and hence that the relativized bounded arithmetic hierarchy can be separated by a family of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall {\Sigma^b_1}$$\end{document} sentences.
引用
收藏
页码:665 / 680
页数:15
相关论文
共 11 条