Glass ceramic coating on LiNi0.8Co0.1Mn0.1O2 cathode for Li-ion batteries

被引:0
|
作者
Hyeong Seop Kang
Palanisamy Santhoshkumar
Jae Woo Park
Gyu Sang Sim
Murugan Nanthagopal
Chang Woo Lee
机构
[1] Kyung Hee University,Department of Chemical Engineering & Center for the SMART Energy Platform, College of Engineering
来源
关键词
Lithium Diborate; Cathode; Ni-rich; Wet Chemical; Surface Modification;
D O I
暂无
中图分类号
学科分类号
摘要
Alleviating the surface degradation of Ni-rich cathode materials is desirable to achieve better electrochemical performance. Herein, we report the surface coating of lithium diborate (Li2O-2B2O3) over the Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material and the systematic investigation of its electrochemical properties. The structural and morphological properties were characterized through X-ray diffraction (XRD), high resolution field-emission scanning electron microscopy (HR FE-SEM), and high resolution field-emission transmission electron microscopy (HR FE-TEM). As a cathode material for Li-ion batteries, the 1.0 wt% Li2O-2B2O3 coated NCM811 exhibits better electrochemical properties than the bare NCM811 as well as 0.5 and 2 wt% coated electrodes at room and elevated temperatures (60 °C). The improved electrochemical performance of 1.0 wt% Li2O-2B2O3 coated NCM811 might be due to the optimal coating amount that promotes better ion and electron movement along with prevention of surface degradation.
引用
收藏
页码:1331 / 1339
页数:8
相关论文
共 50 条
  • [1] Glass ceramic coating on LiNi0.8Co0.1Mn0.1O2cathode for Li-ion batteries
    Kang, Hyeong Seop
    Santhoshkumar, Palanisamy
    Park, Jae Woo
    Sim, Gyu Sang
    Nanthagopal, Murugan
    Lee, Chang Woo
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (08) : 1331 - 1339
  • [2] Experimental and mechanism research of gradient structured LiNi0.8Co0.1Mn0.1O2 cathode material for Li-ion batteries
    Gao, Peng
    Wang, Shan
    Liu, Zhihao
    Jiang, Yunpeng
    Zhou, Weiwei
    Zhu, Yongming
    SOLID STATE IONICS, 2020, 357 (357)
  • [3] Influence of Atmosphere on Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Electrodes for Li-Ion Batteries
    Wang, Ran
    Wang, Jing
    Chen, Shi
    Gao, Ang
    Su, Yuefeng
    Wu, Feng
    5TH ANNUAL INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND ENVIRONMENTAL ENGINEERING (MSEE2017), 2018, 301
  • [4] Complementary dual-doping of LiNi0.8Co0.1Mn0.1O2 cathode enhances ion-diffusion and stability for Li-ion batteries
    Zhihong Wang
    Huawei Zhu
    Haifeng Yu
    Tao Zhang
    Yanjie Hu
    Hao Jiang
    Chunzhong Li
    Chinese Chemical Letters, 2023, 34 (06) : 607 - 612
  • [5] Hydrothermal Synthesis of Tunable Olive-Like Ni0.8Co0.1Mn0.1CO3 and its Transformation to LiNi0.8Co0.1Mn0.1O2 Cathode Materials for Li-Ion Batteries
    Lu, Yan
    Gan, Zhanggen
    Xia, Jin
    Du, Ke
    Peng, Zhongdong
    Cao, Yanbing
    Hu, Guorong
    Xiao, Jin
    CHEMELECTROCHEM, 2019, 6 (22) : 5661 - 5670
  • [6] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Xiao-Feng Zhu
    Xiu Li
    Tian-Quan Liang
    Xin-Hua Liu
    Jian-Min Ma
    Rare Metals, 2023, 42 (02) : 387 - 398
  • [7] Study on Preparation and Performance of LiNi0.8Co0.1Mn0.1O2 as cathode materials for lithium ion batteries
    Wang, Mingming
    Shi, Fangchang
    Yang, Hongzhou
    Gao, Cunsi Sun Yanmin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (10): : 9971 - 9980
  • [8] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Zhu, Xiao-Feng
    Li, Xiu
    Liang, Tian-Quan
    Liu, Xin-Hua
    Ma, Jian-Min
    RARE METALS, 2023, 42 (02) : 387 - 398
  • [9] Silver Nanocoating of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
    Li, Xintong
    Chang, Kai
    Abbas, Somia M.
    El-Tawil, Rasha S.
    Abdel-Ghany, Ashraf E.
    Hashem, Ahmed M.
    Wang, Hua
    Coughlin, Amanda L.
    Zhang, Shixiong
    Mauger, Alain
    Zhu, Likun
    Julien, Christian M.
    MICROMACHINES, 2023, 14 (05)
  • [10] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Xiao-Feng Zhu
    Xiu Li
    Tian-Quan Liang
    Xin-Hua Liu
    Jian-Min Ma
    Rare Metals, 2023, 42 : 387 - 398