Anisotropic Operator Symbols Arising From Multivariate Jump Processes

被引:0
|
作者
Nils Reich
机构
[1] ETH Zürich,
[2] Seminar for Applied Mathematics,undefined
来源
关键词
Primary 45K05, 60J75, 47G30; Secondary 65N30, 47B38; Integral operators; symbol classes; anisotropic Sobolev spaces; Lévy copulas; jump processes; sparse tensor products; wavelet finite elements;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that infinitesimal generators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} of certain multivariate pure jump Lévy copula processes give rise to a class of anisotropic symbols that extends the well-known classes of pseudo differential operators of Hörmander-type. In addition, we provide minimal regularity convergence analysis for a sparse tensor product finite element approximation to solutions of the corresponding stationary Kolmogorov equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}u = f$$\end{document}. The computational complexity of the presented approximation scheme is essentially independent of the underlying state space dimension.
引用
收藏
页码:127 / 150
页数:23
相关论文
共 50 条
  • [1] Anisotropic Operator Symbols Arising From Multivariate Jump Processes
    Reich, Nils
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 63 (01) : 127 - 150
  • [2] Nonlocal problems arising from the birth-jump processes
    Delgado, M.
    Suarez, A.
    Duarte, I. B. M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (02) : 447 - 469
  • [3] Multivariate Levy processes with dependent jump intensity
    Marfe, Roberto
    QUANTITATIVE FINANCE, 2014, 14 (08) : 1383 - 1398
  • [4] Multivariate geometric anisotropic Cox processes
    Martin, James S.
    Murrell, David J.
    Olhede, Sofia C.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (03) : 1420 - 1465
  • [5] On Kolmogorov equations for anisotropic multivariate Levy processes
    Reich, N.
    Schwab, C.
    Winter, C.
    FINANCE AND STOCHASTICS, 2010, 14 (04) : 527 - 567
  • [6] Density approximations for multivariate affine jump-diffusion processes
    Filipovic, Damir
    Mayerhofer, Eberhard
    Schneider, Paul
    JOURNAL OF ECONOMETRICS, 2013, 176 (02) : 93 - 111
  • [7] On Kolmogorov equations for anisotropic multivariate Lévy processes
    N. Reich
    C. Schwab
    C. Winter
    Finance and Stochastics, 2010, 14 : 527 - 567
  • [8] DEMIXING MULTIVARIATE-OPERATOR SELF-SIMILAR PROCESSES
    Didier, Gustavo
    Helgason, Hannes
    Abry, Patrice
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3671 - 3675
  • [9] HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES WITH ANISOTROPIC JUMPING KERNELS
    Kang, Jaehoon
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 385 - 399
  • [10] LINEAR-FILTERING FOR A CLASS OF JUMP-PROCESSES ARISING IN NAVIGATION SYSTEMS
    DABBOUS, TE
    LIM, SS
    AHMED, NU
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1990, 7 (03) : 269 - 292