Turbulent flame visualization using direct numerical simulation

被引:0
|
作者
H. Shalaby
G. Janiga
A. Laverdant
D. Thévenin
机构
[1] University of Magdeburg “Otto von Guericke”,Laboratory of Fluid Dynamics and Technical Flows
[2] Office National d’Etudes et de Recherches Aérospatiales (ONERA),undefined
来源
Journal of Visualization | 2007年 / 10卷
关键词
Direct Numerical Simulation; Turbulent Flames; Visualization; Post-Processing;
D O I
暂无
中图分类号
学科分类号
摘要
Combustion phenomena are of high scientific and technological interest, in particular for energy generation and transportation systems. Direct Numerical Simulations (DNS) have become an essential and well established research tool to investigate the structure of turbulent flames, since they do not rely on any approximate turbulence models. In this work two complementary DNS codes are employed to investigate different types of fuels and flame configurations. The code is π3 is a 3-dimensional DNS code using a low-Mach number approximation. Chemistry is described through a tabulation, using two coordinates to enter a database constructed for example with 29 species and 141 reactions for methane combustion. It is used here to investigate the growth of a turbulent premixed flame in a methane-air mixture (Case 1). The second code,Sider is an explicit three-dimensional DNS code solving the fully compressible reactive Navier-Stokes equations, where the chemical processes are computed using a complete reaction scheme, taking into account accurate diffusion properties. It is used here to compute a hydrogen/air turbulent diffusion flame (Case 2), considering 9 chemical species and 38 chemical reactions.
引用
收藏
页码:187 / 195
页数:8
相关论文
共 50 条
  • [1] Turbulent flame visualization using Direct Numerical Simulation
    Shalaby, H.
    Janiga, G.
    Laverdant, A.
    Thevenin, D.
    [J]. JOURNAL OF VISUALIZATION, 2007, 10 (02) : 187 - 195
  • [2] Direct numerical simulation of turbulent flame kernels using HPC
    Lange, M
    [J]. HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING 01, 2002, : 418 - 432
  • [3] VISUALIZATION OF TURBULENT REACTIVE JET BY USING DIRECT NUMERICAL SIMULATION
    Watanabe, Tomoaki
    Sakai, Yasuhiko
    Nagata, Kouji
    Terashima, Osamu
    Suzuki, Hiroki
    Hayase, Toshiyuki
    Ito, Yasumasa
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2013, 4
  • [4] Flow visualization of the turbulent jet by direct numerical simulation
    Luo, K
    Fan, JR
    Cen, K
    [J]. JOURNAL OF VISUALIZATION, 2004, 7 (02) : 110 - 110
  • [5] Flow visualization of the turbulent jet by Direct numerical simulation
    Kun Luo
    Jianren Fan
    Kefa Cen
    [J]. Journal of Visualization, 2004, 7 : 110 - 110
  • [6] Edge flame structure in a turbulent lifted flame: A direct numerical simulation study
    Karami, Shahram
    Hawkes, Evatt R.
    Talei, Mohsen
    Chen, Jacqueline H.
    [J]. COMBUSTION AND FLAME, 2016, 169 : 110 - 128
  • [7] Direct numerical simulation of a supercritical hydrothermal flame in a turbulent jet
    Jin, Tai
    Song, Changcheng
    Wang, Haiou
    Gao, Zhengwei
    Luo, Kun
    Fan, Jianren
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 922
  • [8] Statistically Significant Results for the Propagation of a Turbulent Flame Kernel Using Direct Numerical Simulation
    H. Shalaby
    D. Thévenin
    [J]. Flow, Turbulence and Combustion, 2010, 84 : 357 - 367
  • [9] Statistically Significant Results for the Propagation of a Turbulent Flame Kernel Using Direct Numerical Simulation
    Shalaby, H.
    Thevenin, D.
    [J]. FLOW TURBULENCE AND COMBUSTION, 2010, 84 (03) : 357 - 367
  • [10] Direct numerical simulation of the turbulent premixed flame propagation with radiation effects
    Kang, Sang Hun
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 : 323 - 330