An innovative heterogeneous transfer learning framework to enhance the scalability of deep reinforcement learning controllers in buildings with integrated energy systems
被引:0
|
作者:
Davide Coraci
论文数: 0引用数: 0
h-index: 0
机构:BAEDA Lab.,Politecnico di Torino, Department of Energy, TEBE research group
Davide Coraci
Silvio Brandi
论文数: 0引用数: 0
h-index: 0
机构:BAEDA Lab.,Politecnico di Torino, Department of Energy, TEBE research group
Silvio Brandi
Tianzhen Hong
论文数: 0引用数: 0
h-index: 0
机构:BAEDA Lab.,Politecnico di Torino, Department of Energy, TEBE research group
Tianzhen Hong
Alfonso Capozzoli
论文数: 0引用数: 0
h-index: 0
机构:BAEDA Lab.,Politecnico di Torino, Department of Energy, TEBE research group
Alfonso Capozzoli
机构:
[1] BAEDA Lab.,Politecnico di Torino, Department of Energy, TEBE research group
[2] Lawrence Berkeley National Laboratory,Building Technology and Urban Systems Division
transfer learning;
reinforcement learning;
building control;
building energy management;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Deep Reinforcement Learning (DRL)-based control shows enhanced performance in the management of integrated energy systems when compared with Rule-Based Controllers (RBCs), but it still lacks scalability and generalisation due to the necessity of using tailored models for the training process. Transfer Learning (TL) is a potential solution to address this limitation. However, existing TL applications in building control have been mostly tested among buildings with similar features, not addressing the need to scale up advanced control in real-world scenarios with diverse energy systems. This paper assesses the performance of an online heterogeneous TL strategy, comparing it with RBC and offline and online DRL controllers in a simulation setup using EnergyPlus and Python. The study tests the transfer in both transductive and inductive settings of a DRL policy designed to manage a chiller coupled with a Thermal Energy Storage (TES). The control policy is pre-trained on a source building and transferred to various target buildings characterised by an integrated energy system including photovoltaic and battery energy storage systems, different building envelope features, occupancy schedule and boundary conditions (e.g., weather and price signal). The TL approach incorporates model slicing, imitation learning and fine-tuning to handle diverse state spaces and reward functions between source and target buildings. Results show that the proposed methodology leads to a reduction of 10% in electricity cost and between 10% and 40% in the mean value of the daily average temperature violation rate compared to RBC and online DRL controllers. Moreover, online TL maximises self-sufficiency and self-consumption by 9% and 11% with respect to RBC. Conversely, online TL achieves worse performance compared to offline DRL in either transductive or inductive settings. However, offline Deep Reinforcement Learning (DRL) agents should be trained at least for 15 episodes to reach the same level of performance as the online TL. Therefore, the proposed online TL methodology is effective, completely model-free and it can be directly implemented in real buildings with satisfying performance.
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
East China Univ Sci & Technol, Engn Res Ctr Proc Syst Engn, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Xiong, Luolin
Tang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
East China Univ Sci & Technol, Engn Res Ctr Proc Syst Engn, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Tang, Yang
Liu, Chensheng
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
East China Univ Sci & Technol, Engn Res Ctr Proc Syst Engn, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Liu, Chensheng
Mao, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Nantong Univ, Dept Elect Engn, Nantong 226019, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Mao, Shuai
Meng, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, AustraliaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Meng, Ke
Dong, Zhaoyang
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, SingaporeEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Dong, Zhaoyang
Qian, Feng
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
East China Univ Sci & Technol, Engn Res Ctr Proc Syst Engn, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China