Affine SU(N) algebra from wall-crossings

被引:0
|
作者
Takahiro Nishinaka
Satoshi Yamaguchi
机构
[1] High Energy Accelerator Research Organization (KEK),Department of Physics, Graduate School of Science
[2] Osaka University,undefined
来源
Journal of High Energy Physics | / 2014卷
关键词
D-branes; Differential and Algebraic Geometry; Topological Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We study the relation between the instanton counting on ALE spaces and the BPS state counting on a toric Calabi-Yau three-fold. We put a single D4-brane on a divisor isomorphic to AN −1-ALE space in the Calabi-Yau three-fold, and evaluate the discrete changes of BPS partition function of D4-D2-D0 states in the wall-crossing phenomena. In particular, we find that the character of affine SU(N) algebra naturally arises in wall-crossings of D4-D2-D0 states. Our analysis is completely based on the wall-crossing formula for the d = 4, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetric theory obtained by dimensionally reducing the Calabi-Yau three-fold.
引用
收藏
相关论文
共 50 条
  • [1] Affine SU(N) algebra from wall-crossings
    Nishinaka, Takahiro
    Yamaguchi, Satoshi
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07):
  • [2] Wall-Crossings for Hassett Descendant Potentials
    Blankers, Vance
    Cavalieri, Renzo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (02) : 898 - 927
  • [3] WALL-CROSSINGS FOR TWISTED QUIVER BUNDLES
    Kim, Bumsig
    Lee, Hwayoung
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (05)
  • [4] Quasimap wall-crossings and mirror symmetry
    Ciocan-Fontanine, Ionut
    Kim, Bumsig
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2020, 131 (01): : 201 - 260
  • [5] Quasimap wall-crossings and mirror symmetry
    Ionuţ Ciocan-Fontanine
    Bumsig Kim
    Publications mathématiques de l'IHÉS, 2020, 131 : 201 - 260
  • [6] The parabolic Verlinde formula: iterated residues and wall-crossings
    Zenes, Andras
    Rapeznikova, Olga
    GEOMETRY & TOPOLOGY, 2024, 28 (05)
  • [7] Generating functions of stable pair invariants via wall-crossings in derived categories
    Toda, Yukinobu
    NEW DEVELOPMENTS IN ALGEBRAIC GEOMETRY, INTEGRABLE SYSTEMS AND MIRROR SYMMETRY (RIMS, KYOTO, 2008), 2010, 59 : 389 - 434
  • [8] Wall-crossings in toric Gromov-Witten theory I: crepant examples
    Coates, Tom
    Iritani, Hiroshi
    Tseng, Hsian-Hua
    GEOMETRY & TOPOLOGY, 2009, 13 : 2675 - 2744
  • [9] Wall-crossings and a categorification of K-theory stable bases of the Springer resolution
    Su, Changjian
    Zhao, Gufang
    Zhong, Changlong
    COMPOSITIO MATHEMATICA, 2021, 157 (11) : 2341 - 2376
  • [10] Argyres-Douglas loci, singularity structures and wall-crossings in pure N=2 gauge theories with classical gauge groups
    Seo, Jihye
    Dasgupta, Keshav
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):