Existence and Uniqueness of Positive Solutions to a Class of Singular Integral Boundary Value Problems of Fractional Order

被引:0
|
作者
J. Caballero
J. Harjani
K. Sadarangani
机构
[1] Universidad de Las Palmas de Gran Canaria,Departamento de Matemáticas
来源
关键词
Fractional boundary value problem; integral boundary conditions; fixed point theorem; positive solution; 34B18; 34B08; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in the study of the existence and uniqueness of positive solutions to the nonlinear singular fractional differential equation D0+αu(t)+f(t,u(t),(Hu)(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\alpha }_{0^+} u(t)+f(t,u(t),(Hu)(t))=0$$\end{document} with 0<t<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<t<1$$\end{document}, where D0+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\alpha }_{0^+}$$\end{document} denotes the classical Riemmann Liouville derivative, under the integral boundary conditions u(0)=u′(0)=⋯=u(n-2)(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(0)=u'(0)=\cdots = u^{(n-2)}(0)=0 $$\end{document} and u(1)=λ∫01u(s)ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u(1)=\lambda \int _0^1 u(s)ds $$\end{document}, where λ∈(0,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in (0,\alpha )$$\end{document}, H is an operator defined on C[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}[0,1]$$\end{document} into itself and f:(0,1]×[0,∞)×[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:(0,1]\times [0,\infty )\times [0,\infty )\rightarrow [0,\infty )$$\end{document} is a continuous function which can have a singularity at (0, x, y). To state our results, we use a fixed point theorem recently proved. Finally, we present some examples illustrating the results obtained.
引用
收藏
相关论文
共 50 条