MacNeille completion and profinite completion can coincide on finitely generated modal algebras

被引:0
|
作者
Jacob Vosmaer
机构
来源
Algebra universalis | 2009年 / 61卷
关键词
Primary: 06E25; Secondary: 06B23; 03B45; 22A30; modal algebra; MacNeille completion; profinite completion;
D O I
暂无
中图分类号
学科分类号
摘要
Following Bezhanishvili and Vosmaer, we confirm a conjecture of Yde Venema by piecing together results from various authors. Specifically, we show that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{A}}$$\end{document} is a residually finite, finitely generated modal algebra such that HSP(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{A}}$$\end{document}) has equationally definable principal congruences, then the profinite completion of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{A}}$$\end{document} is isomorphic to its MacNeille completion, and ◊ is smooth. Specific examples of such modal algebras are the free K4-algebra and the free PDL-algebra.
引用
收藏
相关论文
共 14 条