Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries

被引:0
|
作者
Chandrabose Selvaraj
Ishwar Chandra
Sanjeev Kumar Singh
机构
[1] Alagappa University,CADD and Molecular Modelling Lab, Department of Bioinformatics
来源
Molecular Diversity | 2022年 / 26卷
关键词
Artificial intelligence; Machine learning; Deep learning; Pharmaceutical industry; Imaging;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1893 / 1913
页数:20
相关论文
共 50 条
  • [1] Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries
    Selvaraj, Chandrabose
    Chandra, Ishwar
    Singh, Sanjeev Kumar
    [J]. MOLECULAR DIVERSITY, 2022, 26 (03) : 1893 - 1913
  • [2] Artificial intelligence/machine learning and journalology: Challenges and opportunities
    Shah, Prakesh S.
    Acharya, Ganesh
    [J]. ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2024, 103 (02) : 196 - 198
  • [3] Charting Chemical Space: Challenges and Opportunities for Artificial Intelligence and Machine Learning
    Baldi, Pierre
    Mueller, Klaus-Robert
    Schneider, Gisbert
    [J]. MOLECULAR INFORMATICS, 2011, 30 (09) : 751 - 752
  • [4] Artificial Intelligence and Machine Learning in Cybersecurity: Applications, Challenges, and Opportunities for MIS Academics
    Sen, Ravi
    Heim, Gregory
    Zhu, Qilong
    [J]. COMMUNICATIONS OF THE ASSOCIATION FOR INFORMATION SYSTEMS, 2022, 51 : 179 - 209
  • [5] Predicting Individual Treatment Effects: Challenges and Opportunities for Machine Learning and Artificial Intelligence
    Jaki, Thomas
    Chang, Chi
    Kuhlemeier, Alena
    Van Horn, M. Lee
    [J]. KUNSTLICHE INTELLIGENZ, 2024,
  • [6] Exploring Opportunities and Challenges of Artificial Intelligence and Machine Learning in Higher Education Institutions
    Kuleto, Valentin
    Ilic, Milena
    Dumangiu, Mihail
    Rankovic, Marko
    Martins, Oliva M. D.
    Paun, Dan
    Mihoreanu, Larisa
    [J]. SUSTAINABILITY, 2021, 13 (18)
  • [7] Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success
    Thrall, James H.
    Li, Xiang
    Li, Quanzheng
    Cruz, Cinthia
    Do, Synho
    Dreyer, Keith
    Brink, James
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (03) : 504 - 508
  • [8] Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities and Challenges
    Mukhamediev, Ravil, I
    Popova, Yelena
    Kuchin, Yan
    Zaitseva, Elena
    Kalimoldayev, Almas
    Symagulov, Adilkhan
    Levashenko, Vitaly
    Abdoldina, Farida
    Gopejenko, Viktors
    Yakunin, Kirill
    Muhamedijeva, Elena
    Yelis, Marina
    [J]. MATHEMATICS, 2022, 10 (15)
  • [9] Machine Learning/Artificial Intelligence for Sensor Data Fusion-Opportunities and Challenges
    Blasch, Erik
    Pham, Tien
    Chong, Chee-Yee
    Koch, Wolfgang
    Leung, Henry
    Braines, Dave
    Abdelzaher, Tarek
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2021, 36 (07) : 80 - 93
  • [10] Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors
    Shiammala, Periyasamy Natarajan
    Duraimutharasan, Navaneetha Krishna Bose
    Vaseeharan, Baskaralingam
    Alothaim, Abdulaziz S.
    Al-Malki, Esam S.
    Snekaa, Babu
    Safi, Sher Zaman
    Singh, Sanjeev Kumar
    Velmurugan, Devadasan
    Selvaraj, Chandrabose
    [J]. METHODS, 2023, 219 : 82 - 94