The minimal and maximal operator ideals associated to (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-tensor norms of Michor’s type

被引:0
|
作者
J. A. López Molina
机构
[1] E. T. S. Ingeniería Agronómica y del Medio Natural,
关键词
-fold tensor products; -nuclear and ; -integral ; -linear operators; Ultraproducts; Primary 46M05; 46A32;
D O I
10.1007/s11117-018-0563-8
中图分类号
学科分类号
摘要
We study an (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-tensor norm αrC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^C_{\mathbf {r}}$$\end{document} extending to (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-fold tensor products a tensor norm defined by Michor when n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document} by convexification of a certain s-norm. We characterize the maps of the minimal and the maximal multilinear operator ideals related to αrC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^C_{\mathbf {r}}$$\end{document} in the sense of Defant, Floret and Hunfeld.
引用
收藏
页码:1109 / 1142
页数:33
相关论文
共 50 条