New approach to the numerical solution of forward-backward equations

被引:0
|
作者
Filomena Teodoro
Pedro M. Lima
Neville J. Ford
Patricia M. Lumb
机构
[1] Instituto Superior Técnico,CEMAT
[2] Instituto Politécnico de Setúbal,EST
[3] University of Chester,Department of Mathematics
来源
关键词
Mixed-type functional differential equations; collocation method; theta-method; method of steps; 34K06; 34K28; 65Q05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the approximate solution of functional differential equations having the form: x′(t) = αx(t) + βx(t - 1) + γx(t + 1). We search for a solution x, defined for t ∈ [−1, k], k ∈ ℕ, which takes given values on intervals [−1, 0] and (k-1, k]. We introduce and analyse some new computational methods for the solution of this problem. Numerical results are presented and compared with the results obtained by other methods.
引用
收藏
页码:155 / 168
页数:13
相关论文
共 50 条
  • [1] New approach to the numerical solution of forward-backward equations
    Teodoro, Filomena
    Lima, Pedro M.
    Ford, Neville J.
    Lumb, Patricia M.
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (01) : 155 - 168
  • [2] A concept of solution and numerical experiments for forward-backward diffusion equations
    Bellettini, Giovanni
    Fusco, Giorgio
    Guglielmi, Nicola
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 16 (04) : 783 - 842
  • [3] The numerical solution of forward-backward differential equations: Decomposition and related issues
    Ford, Neville J.
    Lumb, Patricia M.
    Lima, Pedro M.
    Teodoro, M. Filomena
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) : 2745 - 2756
  • [4] Numerical algorithms for forward-backward stochastic differential equations
    Milstein, G. N.
    Tretyakov, M. V.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02): : 561 - 582
  • [5] NUMERICAL METHODS FOR FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
    Douglas, Jim, Jr.
    Ma, Jin
    Protter, Philip
    [J]. ANNALS OF APPLIED PROBABILITY, 1996, 6 (03): : 940 - 968
  • [6] On numerical approximations of forward-backward stochastic differential equations
    Ma, Jin
    Shen, Jie
    Zhao, Yanhong
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2636 - 2661
  • [7] SOLUTION OF FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL-EQUATIONS
    HU, Y
    PENG, S
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1995, 103 (02) : 273 - 283
  • [8] Forward-backward stochastic equations: a functional fixed point approach
    Nam, Kihun
    Xu, Yunxi
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2023, 41 (01) : 16 - 44
  • [9] Forward-backward parabolic equations and hysteresis
    Visintin, A
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 15 (01) : 115 - 132
  • [10] FORWARD-BACKWARD PARABOLIC EQUATIONS AND HYSTERESIS
    PLOTNIKOV, PI
    [J]. DOKLADY AKADEMII NAUK, 1993, 330 (06) : 691 - 693