An electroencephalography connectome predictive model of major depressive disorder severity

被引:0
|
作者
Aya Kabbara
Gabriel Robert
Mohamad Khalil
Marc Verin
Pascal Benquet
Mahmoud Hassan
机构
[1] Lebanese Association for Scientific Research,Academic Department of Psychiatry
[2] MINDig,Comportement et Noyaux Gris Centraux, EA 4712, CHU Rennes
[3] Centre Hospitalier Guillaume Régnier,Azm Center for Research in Biotechnology and Its Applications
[4] Empenn,CRSI Research Center, Faculty of Engineering
[5] U1228,School of Science and Engineering
[6] IRISA,undefined
[7] UMR 6074,undefined
[8] Université de Rennes 1,undefined
[9] EDST,undefined
[10] Lebanese University,undefined
[11] Univ Rennes,undefined
[12] Inserm,undefined
[13] LTSI-U1099,undefined
[14] Reykjavik University,undefined
来源
Scientific Reports | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Emerging evidence showed that major depressive disorder (MDD) is associated with disruptions of brain structural and functional networks, rather than impairment of isolated brain region. Thus, connectome-based models capable of predicting the depression severity at the individual level can be clinically useful. Here, we applied a machine-learning approach to predict the severity of depression using resting-state networks derived from source-reconstructed Electroencephalography (EEG) signals. Using regression models and three independent EEG datasets (N = 328), we tested whether resting state functional connectivity could predict individual depression score. On the first dataset, results showed that individuals scores could be reasonably predicted (r = 0.6, p = 4 × 10–18) using intrinsic functional connectivity in the EEG alpha band (8–13 Hz). In particular, the brain regions which contributed the most to the predictive network belong to the default mode network. We further tested the predictive potential of the established model by conducting two external validations on (N1 = 53, N2 = 154). Results showed statistically significant correlations between the predicted and the measured depression scale scores (r1 = 0.52, r2 = 0.44, p < 0.001). These findings lay the foundation for developing a generalizable and scientifically interpretable EEG network-based markers that can ultimately support clinicians in a biologically-based characterization of MDD.
引用
收藏
相关论文
共 50 条
  • [1] An electroencephalography connectome predictive model of major depressive disorder severity
    Kabbara, Aya
    Robert, Gabriel
    Khalil, Mohamad
    Verin, Marc
    Benquet, Pascal
    Hassan, Mahmoud
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] A Predictive Biomarker Model Using Quantitative Electroencephalography in Adolescent Major Depressive Disorder
    McVoy, Molly
    Chumachenko, Serhiy
    Briggs, Farren
    Kaffashi, Farhad
    Loparo, Kenneth
    JOURNAL OF CHILD AND ADOLESCENT PSYCHOPHARMACOLOGY, 2022, 32 (09) : 460 - 466
  • [3] An electroencephalography connectome predictive model of craving for methamphetamine
    Zhang, Hang-Bin
    Yu, Quanhao
    Zhang, Xinyuan
    Zhang, Yi
    Huang, Taicheng
    Ding, Jinjun
    Yan, Lan
    Cao, Xinyu
    Yin, Lu
    Liu, Yi
    Yuan, Ti-Fei
    Luo, Wenbo
    Zhao, Di
    INTERNATIONAL JOURNAL OF CLINICAL AND HEALTH PSYCHOLOGY, 2025, 25 (01)
  • [4] Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder
    Repple, Jonathan
    Mauritz, Marco
    Meinert, Susanne
    de Lange, Siemon C.
    Grotegerd, Dominik
    Opel, Nils
    Redlich, Ronny
    Hahn, Tim
    Foerster, Katharina
    Leehr, Elisabeth J.
    Winter, Nils
    Goltermann, Janik
    Enneking, Verena
    Fingas, Stella M.
    Lemke, Hannah
    Waltemate, Lena
    Nenadic, Igor
    Krug, Axel
    Brosch, Katharina
    Schmitt, Simon
    Stein, Frederike
    Meller, Tina
    Jansen, Andreas
    Steinstraeter, Olaf
    Baune, Bernhard T.
    Kircher, Tilo
    Dannlowski, Udo
    van den Heuvel, Martijn P.
    MOLECULAR PSYCHIATRY, 2020, 25 (07) : 1550 - 1558
  • [5] Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder
    Jonathan Repple
    Marco Mauritz
    Susanne Meinert
    Siemon C. de Lange
    Dominik Grotegerd
    Nils Opel
    Ronny Redlich
    Tim Hahn
    Katharina Förster
    Elisabeth J. Leehr
    Nils Winter
    Janik Goltermann
    Verena Enneking
    Stella M. Fingas
    Hannah Lemke
    Lena Waltemate
    Igor Nenadic
    Axel Krug
    Katharina Brosch
    Simon Schmitt
    Frederike Stein
    Tina Meller
    Andreas Jansen
    Olaf Steinsträter
    Bernhard T. Baune
    Tilo Kircher
    Udo Dannlowski
    Martijn P. van den Heuvel
    Molecular Psychiatry, 2020, 25 : 1550 - 1558
  • [6] Modulation of the functional connectome in major depressive disorder by ketamine therapy
    Sahib, Ashish K.
    Loureiro, Joana R.
    Vasavada, Megha
    Anderson, Cole
    Kubicki, Antoni
    Wade, Benjamin
    Joshi, Shantanu H.
    Woods, Roger P.
    Congdon, Eliza
    Espinoza, Randall
    Narr, Katherine L.
    PSYCHOLOGICAL MEDICINE, 2022, 52 (13) : 2596 - 2605
  • [7] Altered asymmetry of functional connectome gradients in major depressive disorder
    Yang, Yaqian
    Zhen, Yi
    Wang, Xin
    Liu, Longzhao
    Zheng, Yi
    Zheng, Zhiming
    Zheng, Hongwei
    Tang, Shaoting
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [8] Hippocampus and Amygdala Subregion Connectome Hierarchy in Major Depressive Disorder
    Jacob, Yael
    Morris, Laurel
    Verma, Gaurav
    Rutter, Sarah
    Murrough, James
    Balchandani, Priti
    BIOLOGICAL PSYCHIATRY, 2021, 89 (09) : S239 - S240
  • [9] Reorganization of Anatomical Connectome following Electroconvulsive Therapy in Major Depressive Disorder
    Zeng, Jinkun
    Luo, Qinghua
    Du, Lian
    Liao, Wei
    Li, Yongmei
    Liu, Haixia
    Liu, Dan
    Fu, Yixiao
    Qiu, Haitang
    Li, Xirong
    Qiu, Tian
    Meng, Huaqing
    NEURAL PLASTICITY, 2015, 2015
  • [10] Altered hippocampus and amygdala subregion connectome hierarchy in major depressive disorder
    Jacob, Yael
    Morris, Laurel S.
    Verma, Gaurav
    Rutter, Sarah B.
    Balchandani, Priti
    Murrough, James W.
    TRANSLATIONAL PSYCHIATRY, 2022, 12 (01)