Brewery wastewater treatment using air-cathode microbial fuel cells

被引:0
|
作者
Yujie Feng
Xin Wang
Bruce E. Logan
He Lee
机构
[1] Harbin Institute of Technology,Department of Environmental Science and Engineering
[2] Penn State University,Department of Civil and Environmental Engineering
来源
关键词
Microbial fuel cell; Beer brewery wastewater; Temperature; Solution conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
Effective wastewater treatment using microbial fuel cells (MFCs) will require a better understanding of how operational parameters and solution chemistry affect treatment efficiency, but few studies have examined power generation using actual wastewaters. The efficiency of wastewater treatment of a beer brewery wastewater was examined here in terms of maximum power densities, Coulombic efficiencies (CEs), and chemical oxygen demand (COD) removal as a function of temperature and wastewater strength. Decreasing the temperature from 30°C to 20°C reduced the maximum power density from 205 mW/m2 (5.1 W/m3, 0.76 A/m2; 30°C) to 170 mW/m2 (20°C). COD removals (RCOD) and CEs decreased only slightly with temperature. The buffering capacity strongly affected reactor performance. The addition of a 50-mM phosphate buffer increased power output by 136% to 438 mW/m2, and 200 mM buffer increased power by 158% to 528 mW/m2. In the absence of salts (NaCl), maximum power output varied linearly with wastewater strength (84 to 2,240 mg COD/L) from 29 to 205 mW/m2. When NaCl was added to increase conductivity, power output followed a Monod-like relationship with wastewater strength. The maximum power (Pmax) increased in proportion to the solution conductivity, but the half-saturation constant was relatively unaffected and showed no correlation to solution conductivity. These results show that brewery wastewater can be effectively treated using MFCs, but that achievable power densities will depend on wastewater strength, solution conductivity, and buffering capacity.
引用
收藏
页码:873 / 880
页数:7
相关论文
共 50 条
  • [1] Brewery wastewater treatment using air-cathode microbial fuel cells
    Feng, Yujie
    Wang, Xin
    Logan, Bruce E.
    Lee, He
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 78 (05) : 873 - 880
  • [2] Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production
    Baltazar Estrada-Arriaga, Edson
    Guillen-Alonso, Yvonne
    Morales-Morales, Cornelio
    Garcia-Sanchez, Liliana
    Obed Bahena-Bahena, Erick
    Guadarrama-Perez, Oscar
    Loyola-Morales, Felix
    [J]. WATER SCIENCE AND TECHNOLOGY, 2017, 76 (03) : 683 - 693
  • [3] Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells
    Hakan Bermek
    Tunc Catal
    S. Süha Akan
    Mehmet Sefa Ulutaş
    Mert Kumru
    Mine Özgüven
    Hong Liu
    Beraat Özçelik
    Alper Tunga Akarsubaşı
    [J]. World Journal of Microbiology and Biotechnology, 2014, 30 : 1177 - 1185
  • [4] Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells
    Bermek, Hakan
    Catal, Tunc
    Akan, S. Suha
    Ulutas, Mehmet Sefa
    Kumru, Mert
    Ozguven, Mine
    Liu, Hong
    Ozcelik, Beraat
    Akarsubasi, Alper Tunga
    [J]. WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2014, 30 (04): : 1177 - 1185
  • [5] Electricity generation and wastewater treatment using an Air-Cathode Single Chamber Microbial Fuel Cell
    Cui Kangping
    Wang Ye
    Sun Shiqun
    [J]. 2010 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2010,
  • [6] Energy recovery of ethanolamine in wastewater using an air-cathode microbial fuel cell
    Shin, Ja-Won
    Song, Young-Hyun
    An, Byung-Min
    Seo, Seok-Ju
    Park, Joo-Yang
    [J]. INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2014, 95 : 117 - 121
  • [7] Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells
    Kim, Kyoung-Yeol
    Yang, Wulin
    Evans, Patrick J.
    Logan, Bruce E.
    [J]. BIORESOURCE TECHNOLOGY, 2016, 221 : 96 - 101
  • [8] Removable air-cathode to overcome cathode biofouling in microbial fuel cells
    Oliot, Manon
    Etcheverry, Luc
    Bergel, Alain
    [J]. BIORESOURCE TECHNOLOGY, 2016, 221 : 691 - 696
  • [9] Research on an Air-cathode Single Chamber Microbial Fuel Cell Using Organic Wastewater
    Zhang, Wen-wen
    Huang, Bing
    Chen, Liang
    Li, Yin-guang
    Zheng, Hui-wen
    Li, Meng-yang
    Sun, Dong-gou
    [J]. 2016 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND ENGINEERING (ESE 2016), 2016, : 633 - 639
  • [10] COD removal characteristics in air-cathode microbial fuel cells
    Zhang, Xiaoyuan
    He, Weihua
    Ren, Lijiao
    Stager, Jennifer
    Evans, Patrick J.
    Logan, Bruce E.
    [J]. BIORESOURCE TECHNOLOGY, 2015, 176 : 23 - 31