Solving Second Order Ordinary Differential Equations with Maximal Symmetry Group

被引:0
|
作者
F. Schwarz
机构
[1] GMD,
[2] Institute SCAI,undefined
[3] Schloß Birlinghoven,undefined
[4] 53754 Sankt Augustin,undefined
[5] Germany,undefined
[6] e-mail: fritz.schwarz@gmd.de ,undefined
来源
Computing | 1999年 / 62卷
关键词
AMS Subject Classifications:34A05, 34A25, 34B30, 68Q40.; Key words.Differential equations, Lie symmetries, computer algebra.;
D O I
暂无
中图分类号
学科分类号
摘要
Second order ordinary differential equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y''+A{y'}^3+B{y'}^2+Cy'+D$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y\equiv y(x)$\end{document} and A, B, C and D functions of x and y are of special interest because they may allow the largest possible group of point symmetries if its coefficients satisfy certain constraints. For large classes of these equations a solution algorithm is described that determines its general solution in closed form by reducing it to a linear third-order equation. If the results obtained by Sophus Lie in the last century are supplemented by more recent concepts like Janet bases and Loewy decompositions, a systematic solution procedure is obtained that is easily implemented in a computer algebra system.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 50 条
  • [1] Solving second order ordinary differential equations with maximal symmetry group
    Schwarz, F
    COMPUTING, 1999, 62 (01) : 1 - 10
  • [2] Solving second order ordinary differential equations with maximal symmetry group
    Schwarz, F.
    Computing (Vienna/New York), 1999, 62 (01): : 1 - 10
  • [3] Solving third order differential equations with maximal symmetry group
    Schwarz, F
    COMPUTING, 2000, 65 (02) : 155 - 167
  • [4] Solving Third Order Differential Equations with Maximal Symmetry Group
    Fritz Schwarz
    Computing, 2000, 65 : 155 - 167
  • [5] Exceptional properties of second and third order ordinary differential equations of maximal symmetry
    Moyo, S
    Leach, PGL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (02) : 840 - 863
  • [6] On 3rd order ordinary differential equations with maximal symmetry group
    GMD, Schloß Birlinghofen, D-53757 Sankt Augustin, Germany
    Comput Vienna New York, 1600, 3 (273-280):
  • [7] On 3rd order ordinary differential equations with maximal symmetry group
    Schwarz, F
    COMPUTING, 1996, 57 (03) : 273 - 280
  • [8] Algebraic properties of first integrals for systems of second-order ordinary differential equations of maximal symmetry
    Aslam, A.
    Mahomed, K. S.
    Momoniat, E.
    QUAESTIONES MATHEMATICAE, 2016, 39 (06) : 715 - 726
  • [9] Variable Order Block Method for Solving Second Order Ordinary Differential Equations
    Ibrahim, Zarina Bibi
    Zainuddin, Nooraini
    Othman, Khairil Iskandar
    Suleiman, Mohamed
    Zawawi, Iskandar Shah Mohd
    SAINS MALAYSIANA, 2019, 48 (08): : 1761 - 1769
  • [10] Symmetry of scalar second-order stochastic ordinary differential equations
    Srihirun, Boonlert
    THAI JOURNAL OF MATHEMATICS, 2008, 6 (03): : 59 - 68